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7.21 The z transform of a filter is:
H(z) =1 -2-360

The following sine wave is applied at the input: x(r) = 100 sin(2110¢). The sampling rate is
720 samples/s. (a) What is the peak-to-peak output of the filter? (b) If a unir step input is
applied, what will the output amplitude be after 361 samples? (c) Where could poles be
iaced to convert this to a bandpass filter with integer coefficients?

7.22 What is the phase delay (in milliseconds} through the following filter which operates at 200
samples/sec?

Hy=1= z-100

@ 1-z2

7.23 A filter has 8 zeros located on the unit circle starting at dc and equally spaced at 45°
increments. There are two poles located at z = j. The sampling frequency is 360 samples/s.
‘What is the gain of the filter?
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Adaptive Filters
Steven Tang

This chapter discusses how to build adaptive digital filters to perform noise cancel-
lation and signal extraction. Adaptive techniques are advantageous because they do
not require a priori knowledge of the signal or noise characteristics as do fixed fil-
ters. Adaptive filters enuploy a method of learning through an estimaied synthesis
of a desired signal and error feedback to modify the filter parameters. Adaptive
techniques have been used in filtering of 60-Hz line frequency noise from ECG
signals, extracting fetal ECG signals, and enhancing P waves, as well as for remov-
ing other artifacts from the ECG signal. This chapter provides the basic principles
of adaptive digital filtering and demonstrates some direct applications.

In digital signal processing applications, frequently a desired signal is corrupted
by interfering noise. In fixed filter methods, the basic premise behind optimal fil-
tering is that we must have knowledge of both the signal and noise characteristics.
It is also generally assumed that the statistics of both sources are well behaved or
wide-sense stationary. An adaptive filter learns the statistics of the input sources
and tracks them if they vary slowly.

8.1 PRINCIPAL NOISE CANCELER MODEL

In biomedical signal processing, adaptive techniques are valuable for eliminating
noise interference. Figure 8.1 shows a general model of an adaptive filter noise
canceler. In the discrete time case, we can model the primary input as s(nT) +
np(nT). The noise is additive and considered uncorrelated with the signal source. A
secondary reference input to the filter feeds a noise n1(nT) into the filter to produce
output {(n7) that is a close estimate cf no(nT). The noise n1(nT) is correlated in an
unknown way to ng(nT).

The output {(nT) is subtracted from the primary input to produce the system
output y(nT). This output is also the error £(n7) that is used to adjust the taps of the
adaptive filter coefficients {w(l,..., p)}.

y(nT) = s(nT) + no(nT) - {(nT) (8.1)

174
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Squaring th= output and making the (nT) implicit to simplify each term
| y2 =52+ (ng~ 02+ 2s(np ~ {) (8.2)
Taking the expectation of both sides,
E[y2] = E[s2] + E[(ng - {)2] + 2E[s(ng — )]

= E[52] + E[(np - {2 (8.3)

Primary Es(” ) + g (nT) Systern
input ; output
Noise En (nTY p—
correlated D—'—T——' Adaptive

: filter
refarence ! /

Figura 8.1 The structure of an adaptive filter noise canceler.
Since the signal power E[s2] is unaffected by adjustments to the filter
min Efy2] = E[s2] + min E[(ng - 0?1 8.4)

When the system output power is minimized according to Eq. (8.4), the mean-
squared error (MSE) of (ng - {) is minimum, and the filter has adaptively learned
to synthesize the noise ({ = ng). This approach of iteratively modifying the filter
coefficients using the MSE is called the Least Mean Squared (LMS) algorithm.

8.2 60-HZ ADAPTIVE CANCELING USING A SINE WAVE MODEL

It is well documented that ECG amplifiers are corrupted by a sinusoidal 60-Hz line
frequency noise (Huhta and Webster, 1973). As discussed in Chapter 5, a non-re-
cursive band-reject notch filier can be implemented to reduce the power of noise at
60 Hz. The drawbacks to this design are that, while output noise power is reduced,
such a filter (1) also removes the 60-Hz comnanent af tha cianal /9% hao o coaee.
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slow rolloff that unnecessarily attenuates other frequency bands, and (3) becomes
nonoptimal if either the amplitude or the frequency characteristics of the noise
change. Adaptive transversal (tapped delay line) filters allow for elimination of
noise while maintaining an optimal signal-to-noise ratio for nonstationary
processes.

One simplified method for removal of 60-Hz noise is to model the reference
source as a 60-Hz sine wave (Ahlstrom and Tompkins, 1985). The only adaptive
parameter is the amplitude of the sine wave. Figure 8.2 shows three signals: x(nT)
is the input ECG signal corrupted with 60-Hz noise, e(nT) is the estimation of the
noise using a 60-Hz sine wave, and y(nT) is the output of the filter.

> Primary source (signal + noise)
x(nT}
xnT+ T
e(n)
AYromees e(nT+T)
a(nT- Ty

Estimated noise

Cuiput of fiter
wnn|weren S/

»
L4

t
Figure 8.2 Sine wave model for 60-Hz adaptive cancellation.
The algorithm begins by estimating the noise as an assumed sinusoid with ampli-
tude A and frequency @
e(nT) = Asin{enT) (8.5)

In this equation, we replace term (nT) by (nT — T) to find an expression for the
estimated signal one period in the past. This substitution gives

e(nT — T) = Asin(wnT — wT) (8.6)

Similarly, an expression that estimates the next point in the future is obtained by
replacing (nT) by (nT + T) in Eq. (8.5), giving

e(nT + T) = Asin{amT + wT) 87N
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We now recall a trigonometric identity

sin(a + fB) = 2sin{a) cos(fB) ~ sin(a - f) (8.8)
Now let
a=wnT and (=0l (8.9)

Expanding the estimate for the future estimate of Eq. (8.7) using Egs. (8.8) and
(8.9) gives
e(nT + T) =2 Asin(wnT) cos(wTl) - Asin{wnT - wl) (8.10)

Note that the first underlined term is the same as the expression for e(n7T) in Eq.
(8.5), and the second underlined term is the same as the expression for e(nT — T) in
Eq. (8.6). The term, cos(wT), is a constant determined by the frequency of the
noise @ to be eliminated and by the sampling frequency, f;= 1/T:

N = cos(wT} = cos G,ﬂ] 8.11)
A

Thus, Eq. (8.10) is rewritten, giving a relation for the future estimated point on a
sampled sinusoidal noise waveform based on the values at the current and past

sample times.
e(nT +T) = 2Ne(nT) — e(nT - T) (8.12)

The output of the filter is the difference between the input and the estimated signals
YnT+Ty=x(nT+T)—e(nT+T) (8.13)

Thus, if the input were only noise and the estimate were exactly tracking (i.e.,
modeling) it, the output would be zero. If an ECG were superimposed on the input
noise, it would appear noise-free at the output.

The ECG signal is actually treated as a transient, while the filter iteratively at-
tempts to change the “weight” or amplitude of the reference input to match the de-
sired signal, the 60-Hz noise. The filter essentially leams the amount of noise that
is present in the primary input and subtracts it out. In order to iteratively adjust the
filter to adapt to changes in the noise signal, we need feedback to adjust the sinu-
soidal amplitude of the estimate signal for each sample period.

We define the difference function

SinT+ Ty = [x(nT + T) — e(nT + T)] - [x(nT) - e(nT)] {8.14)

In order to understand this function, consider Figure 8.3. Our original model of the
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shown. Typically, however, there is a dc offset represented by Vg in the input
x(nT) signal. From the figure

VacnT+T) =x(nT+ T)—e(nT+ T} (8.15)
Vdc(nT) = x(nT} — e(nT) (8.16)

and also

Assuming that the dc level does not change significantly between samples, then
VacnT +T) = Vac(nT) =0 8.17)
This subtraction of the terms representing the dc level in Eqgs. (8.15) and (8.16) is

the basis for the function in Eq. (8.14). It subtracts the dc while simultaneously
comparing the input and estimated waveforms.

Actual noise with de offset

-

anT+7)

/

Estimated noise

[
|
|
}
|
|

0 -4
t

Figure 8.3 The actual noise waveform may include a dc offset that was included in the originat
model of the estimated signal.
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We use AnT + T) to determine if the estimate e(nT) was too large or too small. If
f(nT +T) =0, the estimate is correct and there is no need to adjust the future
estimate, or

enT+N=e(nT+ 1 (8.18)

If AnT + T) > 0, the estimate is low, and the estimate is adjusted upward by a smalil
step size d
enT+Ty=e(nT+T)+d (8.19)

If AnT + T) < 0, the estimate is high and the estimate is adjusted downward by a
smali step size d
enT+ N =e(nT+T)-d (8.20)

The choice of d is empirically determined and depends on how quickly the filter
needs to adapt to changes in the interfering noise. If d is large, then the filter
quickly adjusts its coefficients after the onset of 60-Hz noise. However, if d is too
large, the filter will not be able to converge exactly to the noise. This results in
small oscillations in the estimated signal once the correct amplitude has been
found. With a smaller d, the filter requires a longer learning period but provides
more exact tracking of the noise for a smoother output. If the value of d is too large
or too small, the filter will never converge to a proper noise estimate.

A typical vaiue of d is less than the least significant bit value of the integers used
to represent a signal, For example, if the full range of numbers from an 8-bit A/D
converter is 0—255, then an optimal value for d might be 1/4.

Producing the estimated signal of Eq. (8.12) requires multiplication by a fraction
N given in Eq. (8.11). For a sampling rate of 500 sps and 60-Hz power line noise

7 X 60
N= cos(2 o ): 0.7289686 8.21)

Such a multiplier requires floating-point arithmetic, which could considerably slow
down the algorithm. In order to approximate such a multiplier, we might choose to
use a summation of power-of-two fractions, which could be implemented with bit-
shift operations and may be faster than floating-point multiplication in some hard-
ware environments. In this case

i 1.1 .1 1 1 1
N=2+8+16*32% 128 * 512 + 2045 = 072900 ®.22)
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8.3 OTHER APPLICATIONS OF ADAPTIVE FILTERING

Adaptive filtering is not only used to suppress 60-Hz interference but also for
signal extraction and artifact cancellation. The adaptive technique is advantageous
for generating a desired signal from one that is uncorrelated with it.

8.3.1 Maternal ECG in fetal ECG

Prenatal monitoring has made it possible to detect the heartbeat of the unbomn child
noninvasively. However, motion artifact and the maternal ECG make it very
difficult to perceive the fetal ECG since it is a low-amplitude signal. Adaptive
filtering has been used to eliminate the maternal ECG. Zhou et al. (1985) describe
an algorithm that uses a windowed LMS routine to adapt the tap weights. The
abdominal lead serves as the primary input and the chest lead from the mother is
used as the reference noise input. Subtracting the best matched maternal ECG from
the abdominal ECG which contains both the fetal and maternal ECGs produces a
residual signal that is the fetal ECG.

8.3.2 Cardiogenic artifact

The area of electrical impedance pneumography has used adaptive filtering to solve
the problem of cardiogenic artifact (ZCG). Such artifact can arise from electrical
impedance changes due to blood flow and heart-volume changes. This can lead to a
false interpretation of breathing. When monitoring for infant apnea, this might
result in a failure to alarm. Sahakian and Kuo (1985) proposed using an adaptive
LMS algorithm to extract the cardiogenic impedance component so as to achieve
the best estimate of the respiratory impedance component. To model the
cardiogenic artifact, they created a template synchronized to the QRS complex in
an ECG that included sinus arthythmia. Cardiogenic artifact is synchronous with
but delayed from ventricular systole, so the ECG template can be used to derive
and eliminate the ZCG.,

8.3.3 Detection of ventricular fibrillation and tachycardia

Ventricular fibrillation detection has generally used frequency-domain techniques.
This is computationally expensive and cannot always be implemented in real time.
Hamilton and Tompkins (1987) describe a unique method of adaptive filtering to
locate the poles corresponding to the frequency spectrum formants. By running a
second-order IIR filter, the poles derived from the coefficients give a fairly good
estimate of the first frequency peak.
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The corresponding z transform of such a filter is

1
-bizr - pyr2

H(z) = 1

We can solve for the pole radius and angle by noting that, for all poles not on the
real axis _
by=2rcos@ and by=-2

Using the fact that fibrillation produces a prominent peak in the 3—-7 Hz fre-
quency band, we can determine whether the poles fall in the “detection region” of
the z plane. An LMS algorithm updates the coefficients of the filter. Figure 8.4
shows the z-plane pole-zero diagram of the adaptive filter. The shaded region indi-
cates that the primary peak in the frequency spectrum of the ECG is in a
“dangerous” area. The only weakness of the algorithm is that it creates false detec-
tions for rhythm rates greater than 100 bpm with frequent PVCs, atrial fibrillation,
and severe motion artifact.

Max. freq. Pols in

detection
zone

Min. freq.

fs/2 0OHz
fs
Min.
X radius
zplane

Figure 8.4 The z plane showing the complex-conju gate poles of the second-order adaptive filter.

8.4 LAB: 60-HZ ADAPTIVE FILTER

Load UW DigiScope, select ad(v) ops, then (A} daptiva. This module is a
demonstration of a 60-Hz canceling adaptive filter as described in the text. You
have control over the filter’s step size d. This controls how quickly the filter learns
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the amount of 60 Hz in the signal. By tuming the 60-Hz noise off after the filter
has adapted out the noise, you can observe that the filter must now unlearn the 60-
Hz component. This routine always uses the same data file adapting.dat to which
the 60-Hz noise is added.
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8.6 STUDY QUESTIONS

8.1 What are the main advantages of adaptive filters over fixed filters?

8.2 Explain the criterion that is used to construct a Wiener filter.

8.3  Why is the error residual of a Wiener filter normal to the output?

8.4 Design an adaptive filter using the method of steepest-descent.

8.5 Design an adaptive filter using the LMS algorithm.

8.6 Why are bounds necessary on the siep size of the steepest-descent and LMS algorithms?

8.7 What are the costs and benefits of using different step sizes in the 60-Hz sine wave
algorithm?

8.8 Explain how the 60-Hz sine wave algorithm adapts to the phase of the noise.

8.9 The adaptive 60-Hz filter calculates a function

AT + T = {x(nT + T} =~ e(nT + T)] - [x(nT) - e(nT)]

If this function is less than zero, how does the algorithm adjust the future estimate,
e(nT +1)?
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.10 The adaptive 60-Hz filter uses the following equation to estimate the noise:
enT + T)=2Ne(nT)—~e(nT-T)
If the future estimate is found to be too high, what adjustment is made to (a) e(nT —T),

(b} e(nT + T). (¢) Write the equation for N and explain the terms of the equation.
.11 The adaptive 60-Hz filter calculates the function

FinT + T) = [x(nT + T) —e(nT + T)] - [x(nT) — e{nT)]

It adjusts the future estimate e(nT + T) based on whether this function is greater than, less
than, or equal to zero. Use a drawing and explain why the function could not be simplified

to
T+ D =x(nT+T)—e(nT +T)
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Signal Averaging

Pradeep Tagare

Linear digital filters like those discussed in previous chapters perform very wel
when the spectra of the signal and noise do not significantly overlap. For example
a low-pass filter with a cutoff frequency of 100 Hz generally works well for atten-
uating noise frequencies greater than 100 Hz in ECG signals. However, if high
level noise frequencies were to span the frequency range from 50-100 Hz, attempt.
ing to remove them using a 50-Hz low-pass filter would attenuate some of the
components of the ECG signal as well as the noise. High-amplitude noise corrup:
tion within the frequency band of the signal may completely obscure the signal
Thus, conventional filtering schemes fail when the signal and noise frequency
spectra significantly overlap. Signal averaging is a digital technique for separating
a repetitive signal from noise without introducing signal distortion (Tompkins and
Webster, 1921), This chapter describes the technique of signal averaging fo
increasing the signal-to-noise ratio and discusses several applications.

9.1 BASICS OF SIGNAL AVERAGING

Figure 9.1(a) shows the spectrum of a signal that is corrupted by noise. In this case,
the noise bandwidth is completely separated from the signal bandwidth, so the
noise can easily be discarded by applying a linear low-pass filter. On the other
hand, the noise bandwidth in Figure 9.1(b) overlaps the signal bandwidth, and the
noise amplitude is larger than the signal. For this situation, a low-pass filter would
need to'discard some of the signal energy in order to remove the noise, thereby dis-
torting the signal.

One predominant application area of signal averaging is in electroencephalogra-
phy. The EEG recorded from scalp electrodes is difficult to interpret in part be-
cause it consists of a surnmation of the activity of the billions of brain cells. Tt is
impossible to deduce much about the activity of the visual or auditory parts of the
brain from the EEG. However,:if we stimulate a part of the brain with a flash of
light or an acoustical click, an evoked response occurs in the region of the brain

184
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that processes information for the sensory system being stimulated. By summing
the signals that are evoked immediately following many stimuli and dividing by
the total number of stimuli, we obtain an averaged evoked response. This signal
can reveal a great deal about the performance of a sensory system.,

Signal averaging sums a set of time epochs of the signal together with the super-
imposed random noise. If the time epochs are properly aligned, the signal wave-
forms directly sum together. On the other hand, the uncorrelated noise averages out
in time. Thus, the signal-to-noise ratio (SNR) is improved.

Signal averaging is based on the following characteristics of the signal and the
noise:

1. The signal waveform must be repetitive (alihough it does not have to be peri-
odic). This means that the signal must occur more than once but not necessarily
at regular intervals. ‘

2. The noise must be random and uncorrelated with the signal. In this application,
random means that the noise is not periodic and that it can only be described
statistically {e.g., by its mean and variance).

3. The temporal position of each signal waveform must be accurately known.

3 8
£ £ Noise
Signal Noise g
E| Soal E
Frequency Frequency
(a) (b

Figure 9.1 Signal and noise spectra. (2) The signal and noise bands do not overlap, so a conven-
tional low-pass filter can be used to retain the signal and discard the noise. (b) Since the signal
and noise spectra overlap, conventional filters cannot be used to discard the noise frequencies
without discarding some signal energy. Signal averaging may be useful in this case.

It is the random nature of noise that makes signal averaging useful. Each time
epoch (or sweep) is intentionally aligned with the previous epochs so that the digi-
tized samples from the new epoch are added to the corresponding samples from the
previous epochs. Thus the time-aligned repetitive signals S in each epoch are added
directly together so that after four epochs, the signal amplitude is four times larger
than for one epoch (45). If the noise is random 1nd has a mean of zero and an aver-
age rms value N, the rms value after four epoths is the square root of the sum of
sauares (i.e.. (AN2Y42 or 2N). In peneral after -» repetitions the signal amplitude is
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mS and the noise amplitude is (m)1/2N. Thus, the SNR improves as the ratio of m to
ml/2 (i.e., m1/2), For example, averaging 100 repetitions of a signal improves the
SNR by a factor of 10. This can be proven mathematicaily as follows.

The input waveform f{f) has a signal portion 5(¢) and a noise portion N(¢). Then

L) =51 +N(@) : (9.1)

Let R¢) be sampled every T seconds. The value of any sample point in the time
epoch (i = 1, 2,..., n) is the sum of the noise component and the signal component.

fUT) = SGT) + NGT) 9.2)

Each sample point is stored in memory. The value stored in memory location i after
m repetitions is

m m m
El i) = E,} ST + él NGT) for i=1,2,...,n (9.3)

The signal component for sample point { is the same at each repetition if the signal
is stable and the sweeps are aligned together perfectly. Then

m
IZ‘ISGT) =mS(iT) (9.4)

The assumptions for this development are that the signal and noise are uncorrelated
and that the noise is random with a mean of zero. After many repetitions, N(iT) has
an rms value of oy,

m
kZN(iT) = \moy2=Nm on (9.5)
=1
Taking the ratio of Eqs, (9.4) and (9.5) gives the SNR after m repetitions as
mS(T)
SNRy, = = NR .
m= vm 'S 9.6)

Thus, signal averaging improves the SNR by a factor of Vm. Figure 9.2 is a graph
illustrating the results of Eq. (9.6)
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Figure 9.2 Increase in SNR as a function of the number of sweeps averaged.

Figure 9.3 illustrates the problem of signal averaging. The top trace is the ECG
of the middle trace after being corrupted by random noise. Since the noise is
broadband, there is no way to completely remove it with a traditional linear filter
without alsc removing some of the ECG frequency components, thereby distorting
the ECG. Signal averaging of this noisy signal requires a way to time align each of
the QRS complexes with the others. By analyzing a heavily filtered version of the
waveform, it is possible to locate the peaks of the QRS complexes and use them for
time alignment. The lower trace shows these timing references (fiducial points)
that are required for signal processing.

Figure 9.4 shows how the QRS complexes, centered on the fiducial points, are
assembled and summed to produce the averaged signal. The time-aligned QRS
complexes sum directly while the noise averages out to zero. The fiducial marks
may also be located before or after the signal to be averaged, as long as they have
accurate temporal relationships to the signals.

One research area in electrocardiography is the study of late potentials that re-
quire an ECG amplifier with a bandwidth of 500 Hz, These small, high-frequency
signals of possible clinical significance occur after the QRS complex in body sur-
face ECGs of abnormals. These signals are so small compared to the other wave-
forms in the ECG that they are hidden in the noise and are not observable without
signal averaging. In this application, the fiducial points are derived from the QRS
complexes, and the averaging region is the time following each QRS complex.
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Figure 9.3 The top trace is the ECG of the center trace corrupted with random noise. The
bottom trace provides fiducial marks that show the locations of the QRS peaks in the signal.

(a)

(b)

(c)

(d)

TE

Figure 9.4 Summing the time-aligned signal epochs corrupted with random noise such as those
in (a), (b), and (_c). which were extracted from Figure 9.3, improves the signal-to-noise ratio. The
result of averaging 100 of these ECG time epochs to improve the SNR by 10 is in (d).
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9.2 SIGNAL AVERAGING AS A DIGITAL FILTER

Signal averaging is a kind of digital filtering process. The Fourier transform of the
transfer function of an averager is composed of a series of discrete frequency com-
ponents. Figure 9.5 shows how each of these components has the same spectral
characteristics and amplitudes. Because of the appearance of its amplitude re-
sponse, this type of filter is called a comb filter.

The width of each tooth decreases as the number of sweep repetitions increases.
The desired signal has a frequency spectrum composed of discrete frequency com-
ponents, a fundamental and harmonics. Noise, on the other hand, has a continuous
distribution. As the bandwidth of each of the teeth of the comb decreases, this filter
more selectively passes the fundamental and harmonics of the signal while reject-
ing the random noise frequencies that fall between the comb teeth. The signal aver-
ager, therefore, passes the signal while rejecting the noise,

Amplitude

e

Frequency

Figure 9.5 Fourier transform of a signal averager. As the number of sweeps increase, the width
of each tooth of the comb decreases.

9.3 ATYPICAL AVERAGER

Figure 9.6 shows the block diagram of a typical averager. To average a signal such
as the cortical response to an auditory stimulus, we stimulate the system (in this
case, a human subject) with an auditory click to the stimulus input. Simultaneously,
we provide a trigger derived from the stimulus that enables the surnmation of the
sampled data (in this case, the EEG evoked by the stimulus) with the previous re-
sponses {time epochs or sweeps) stored in the buffer. When the averager receives
the trigger pulse, it samples the EEG waveform at the selected rate, digitizes the
signal, and sums the samples with the contents of a memory location corresponding
to that sample interval (in the buffer). The process continues, stepping through the
memory addresses until all addresses have been sampled. The sweep is terminated
at this point. A new sweep begins with the next trigger and the cycle repeats until
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the desired number of sweeps have been averaged. The result of the averaging pro-
cess is stored in the buffer which can then be displayed on a CRT as the averaged
evoked response,

Stimulus
- System Response after
time t

Trigger +
Sum of sweeps

- Enable E— Buffer

Figure 9.6 Block diagram of a typical signal averager.
9.4 SOFTWARE FOR SIGNAL AVERAGING

Figure 9.7 shows the flowchart of a program for averaging an ECG signal such as
the one in Figure 9.3. The program uses a QRS detection algorithm to find a fidu-
cial point at the peak of each QRS complex. Each time a QRS is detected, 128 new
sample points are added to a buffer—64 points before and 64 points after the fidu-
cial point.

9.5 LIMITATIONS OF SIGNAL AYERAGING

An important assumption made in signal averaging theory is that the noise is
Gaussian. This assumption is not usually completely valid for biomedical signals.
Also, if the noise distribution is related to the signal, misleading results can occur.
If the fiducial point is derived from the signal itself, care must be taken to ensure
that noise is not influencing the temporal location of the fiducial point. Otherwise,
slight misalignment of each of the signal waveforms will lead to a low-pass filter-
ing effect in the final result.
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Figure 9.7 Flowchart of the signal averaging program.
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9.6 LAB: ECG SIGNAL AVERAGING

Load UW DigiScope, select ad(v) ops, then A (V) erage. This module is a
demonstration of the use of signal averaging. The source file is always aver-
age.dat to which random, gaussian-distributed noise is added. A clean version of
the data is preserved to use as a trigger signal. The averaged version of the data,
displayed in the output channel, will build in size as successive waveforms are
added. A summation of the accumulated signal traces is displayed, not the average.
Thus you need to scale down the amplitude of the resultant signal in order to see
the true average at the same amplitude scale factor as the original signal. Scaling of
the output channel can be controlled as the traces are acquired. The down arrow
key divides the amplitude by two each time it is struck. For example, while adding
16 heartbeats, you would need to strike the down arrow four times to divide the
output by 16 so as to obtain the proper amplitude scale.

9.7 REFERENCES

Tompkins, W. J. and Webster, J. G. (eds.) 1981. Design of Microcomputer-based Medical
Instrumentation. Englewood Cliffs, NJ: Prentice Hall.

9.8 STUDY QUESTIONS

1 Under what noise conditions will signal averaging fail to improve the SNR?

2 Inasignal averaging application, the amplitude of uncorrelated noise is initially 16 times as
large as the signal amplitude. How many sweeps must be averaged to give a resulting
signal-to-noise ratio of 4:17

9.3 Afier signal averaging 4096 EEG evoked responses, the signal-to-noise ratio is 4.

Assuming that the EEG and noise sources are uncorrelated, what was the SNR before
averaging?

9.4 In a signal averaging application, the noise amplitude is initially 4 times as large as the sig-

n?La?;piitude. How many sweeps must be averaged to give a resulting signal-to-noise ratio
of 4;

9.5 In asignal averaging application, the signal caused by a stimulus and the noise are slightly

correlated. The frequency spectra of the signal and noise overlap. Averaging 100 responses

will improve the signal-to-notse ratio by what factor?

9.
9.
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Data Reduction Techniques
Kok-Fung Lai

A typical computerized medical signal processing system acquires a large amount
of data that is difficult to store and transmit. We need a way to reduce the data
storage space while preserving the significant clinical content for signal recon-
struction. In some applications, the process of reduction and reconstruction re-
quires real-time performance (Jalaleddine et al., 1988).

A data reduction algorithm seeks to minimize the number of code bits stored by
reducing the redundancy present in the original signal. We obtain the reduction ra-
tio by dividing the number of bits of the original signal by the number saved in the
compressed signal, We generally desire a high reduction ratio but caution against
using this parameter as the sole basis of comparison among data reduction algo-
rithms. Factors such as bandwidth, sampling frequency, and precision of the origi-
nal data generally have considerable effect on the reduction ratio (Jalaleddine et al.,
1990).

A data reduction algorithm must also represent the data with acceptable fidelity.
In biomedical data reduction, we usually determine the clinical acceptability of the
reconstructed signal through visual inspection. We may also measure the residual,
that is, the difference between the reconstructed signal and the original signal. Such
a numerical measure is the percent root-mean-square difference, PRD, given by

» 1
>, Dorg(i) —ecli)2

PRD = - x 100 % (10.1)
Y Lxorg(i)2
i=1

where n is the number of samples and xrg and xc are samples of the original and
reconstructed data sequences.

A lossless data reduction algorithm produces zero residual, and the reconstructed
signal exactly replicates the original signal. However, clinically acceptable quality
is neither guaranteed by a low nonzero residual nor ruled out by a high numerical
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residual (Moody et al., 1988). For example, a data reduction algorithm for an ECG
recording may eliminate small-amplitude baseline drift. In this case, the residual
contains negligible clinical information. The reconstructed ECG signal can thus be
quite clinically acceptable despite a high residual.

In this chapter we discuss two classes of data reduction techniques for the ECG.
The first class, significant-point-extraction, includes the turning point (TP)
algorithm, AZTEC (Amplitude Zone Time Epoch Coding), and the Fan algorithm.
These techniques generally retain samples that contain important information about
the signal and discard the rest. Since they produce nonzero residuals, they are {ossy
algorithms. In the second class of techniques based on Huffman coding, variable-
length code words are assigned to a given quantized data sequence according to
frequency of occurrence. A predictive algorithm is normally used together with
Huffman coding to further reduce data redundancy by examining a successive
number of neighboring samples.

10.1 TURNING POINT ALGORITHM

The original motivation for the turning point (TP) algorithm was to reduce the
sampling frequency of an ECG signal from 200 to 100 samples/s (Mueller, 1978).
The algorithm developed from the observation that, except for QRS complexes
with large amplitudes and slopes, a sampling rate of 100 samples/s is adequate.

TP is based on the concept that ECG signals are normally oversampled at four or
five times faster than the highest frequency present. For example, an ECG used in
monitoring may have a bandwidth of 50 Hz and be sampled at 200 sps in order to
easily visualize the higher-frequency attributes of the QRS complex. Sampling the-
ory tells us that we can sample such a signal at 100 sps. TP provides a way to re-
duce the effective sampling rate by half to 100 sps by selectively saving important
signal points (i.e., the peaks and valleys or tuming points).

The algorithm processes three data points at a time. It stores the first sample
point and assigns it as the reference point Xg. The next two consecutive points be-
come Xy and X2, The algorithm retains either X1 or X3, depending on which point
preserves the turning point (i.e., slope change) of the original signal.

Figure 10.1(a) shows all the possible configurations of three consecutive sample
points. In each frame, the solid point preserves the slope of the original three
points. The algorithm saves this point and makes it the reference point Xo for the
next iteration, It then samples the next two points, assigns them to X and X, and
repeats the process.

We use a simple mathematical criterion to determine the saved point. First
consider a sign{x) operation

0 x=0
sign(x)=1 +1 x>0 (10.2)
-1 x<0
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Pattern | s =sign(X1-X0p) | 52 =sign(X2 —X1) | NOT(s1) OR (5] +s2) | Saved sample
1 +1 +1 1 X2
2 +1 -1 0 X1
3 +1 0 1 X2
4 -1 +1 0 X1
5 -1 -1 1 X2
6 -1 0 1 X2
7 0 +1 1 X2
8 0 -1 1 X3
9 0 0 1 X2

(b)

Figure 10.1 Tuming point (TP) algorithm. (a) All possible 3-point configurations. Each frame
includes the sequence of three points X, X¢, and X2. The solid points are saved.
{b) Mathematical criterion used to determine saved point.

We then obtain s = sign(X1 ~ Xo) and 52 = sign(X2 - X1), where (X1 - Xg) and
(X2 ~ X1) are the slopes of the two pairs of consecutive points. If a slope is zero,
this operator produces a zero result. For positive or negative slopes, it yields +1 or
-1 respectively. A tumning point occurs only when a slope changes from positive to
negative or vice versa.

We use the logical Boolean operators, NOT and OR, as implemented in the C
language to make the final judgment of when a turning point occurs. In the C
language, NOT(c) = 1 if ¢ = 0; otherwise NOT(c) = 0. Also logical OR means that
{(a OR b ) = 0 only if a and b are both 0. Thus, we retain X; only if {NOT(s;) OR
(51 + 52)) is zero, and save X2 otherwise. In this expression, (5] + 52) is the arith-
metic sum of the signs produced by the sign function. The final effect of this pro-
cessing is a Boolean decision whether to save X1 or X2. Point Xy is saved only
when the slope changes from positive to negative or vice versa. This computation
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could be easily done arithmetically, but the Boolean operation is computationally
much faster,

Figure 10.2 shows the implementation of the TP algorithm in the C language.
Figure 10.3 is an example of applying the TP algorithm to a synthesized ECG
signal.

fidetine siga(x) ((X)7((x>0)71:-1):0)}

short *org, *tp; /* original and tp data */
short x0, x1, x2 ; /* data points */

short sl,s2; /* signs */

X0 = *tp++ = ¥org++ | /* save the first sample */

while(there_is_sample) {

x1 = *orp++
X2 = *org++
sl = sign(x1-x(0) ;
52 = sign(x2-x1) ;
| *p++=x0= (sl 1 (s1+s2) } 7 x2:x1;

Figure 10,2 C-language fragment showing TP algorithm implementation.

JAJN

(a)

(b)

Figure 10.3 An example of the application of the TP algorithm. (a) Original waveform generated
by the UW DigiScope cenwava function (see Appendix D). (b) Reconstructed signal after one
application of the TP algorithm. Reduction ratio is 512:256, PRD = 7.78%.
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The TP algorithm is simple and fast, producing a fixed reduction ratio of 2:1.
After selectively discarding exactly half the sampled data, we can restore the origi-
nal resolution by interpolating between pairs of saved data points.

A second application of the algorithm to the already reduced data increases the
reduction ratio to 4:1, Using data acquired at a 200-sps rate, this produces com-
pressed data with a 50-sps effective sampling rate. If the bandwidth of the acquired
ECG is 50 Hz, this approach violates sampling theory since the effective sampling
rate is less than twice the highest frequency present in the signal. The resulting re-
constructed signal typically has a widened QRS complex and sharp edges that re-
duce its clinical acceptability. Another disadvantage of this algorithm is that the
saved points do not represent equally spaced time intervals. This introduces short-
term time distortion. However, this localized distortion is not visible when the re-
constructed signal is viewed on the standard clinical monitors and paper recorders.

10.2 AZTEC ALGORITHM

Originally developed to preprocess ECGs for rhythm analysis, the AZTEC
(Amplitude Zone Time Epoch Coding) data reduction algorithm decomposes raw
ECG sample points into plateaus and slopes (Cox et al., 1968). It provides a se-
quence of line segments that form a piecewise-linear approximation to the ECG.

10.2.1 Data reduction

Figure 10.4 shows the complete flowchart for the AZTEC algorithm using C-lan-
guage notation. The algorithm consists of two parts—Iline detection and line pro-
cessing.

Figure 10.4(a) shows the line detection operation which makes use of zero-order
interpolation (ZOI) to produce horizontal lines. Two variables Vi and Vi, always
reflect the highest and lowest elevations of the current line. Variable LineLen keeps
track of the number of samples examined. We store a plateau if either the differ-
ence between Vpyiand Viup; is greater than a predetermined threshold Vi or if
LineLen is greater than 50. The stored values are the length (LineLen — 1) and the
average amplitude of the plateau (Vix + Vinn)/2.

Figure 10.4(b) shows the line process.ng aigorithm which either produces a
plateau or a slope depending on the value of the variable LineMode. We initialize
LineMode to _PLATEAU in order to begin by producing a plateau. The production
of an AZTEC slope begins when the number of samples needed to form a plateau
is less than three. Setting LineMode to _SLOPE indicates that we have entered
slope production mode. We then determine the direction or sign of the current
slope by subtracting the previous line amplitude V' from the current amplitude V.
We also reset the length of the slope T5;. The variable Vi; records the current line
amplitude so that any change in the direction of the slope can be tracked. Note that
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Vimxi and Vippy are always updated to the latest sample before line detection begins.
This forces ZOI to begin from the value of the latest sample.

Vmxl = Vmni =« ECGL
LinaMode = _PLATEAU
LinelLen = 1

cAZT = |

nJ

Wait for
next
sample

V= ECGt

Vmx = Vhxi
Vmn « Vmnl
LineLen +m 1

Vixi = V

n Yy
4@ vmni = v

N i
Y
mx! - Vmnl
< Vith
N

T1=NUM -1
V1 = (Vix's Vmn)/2

© &

Figure 10.4(a) Flowchart for the line detection operation of the AZTEC algorithm,
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‘AZT++ = -1 " Tsi
‘AZT++ = V1

ineMode =

*AZT++= T4
1 AZT e+ V1 PLATEAU
cAZT +=4
LineMode =
_PLATEAU

AZT++ = T1
AZT 44+ = V1
CAZT += 2

*AZT++=-1*Tsl

“AZT++ = Vs
o |AET +=2 LinaMode » _SLOPE
Tsi=0 Vsi « *(AZT - 1)
Vi = V1 N
Sign ‘m -1

Tsi+= T1
Vsi= V1

Vmxi = Vmni = V|
LingLen = 1

Figure 10.4(b) Flowchart of the line processing operation of the AZTEC algorithm.

When we reenter line processing with LineMode equal to _SLOPE, we either
save or update the slope. The slope is saved either when a plateau of more than
three samples can be formed or when a change in direction is detected. If we detect
a new plateau of more than three samples, we store the current slope and the new
plateau. For the slope, the stored values are its length T; and its final elevation V1.
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Note that T is multiplied by ~1 to differentiate a slope from a plateau (i.e., the
minus sign serves as a flag to indicate a slope). We also store the length and the
amplitude of the new plateau, then reset all parameters and return to plateau pro-
duction.

If a change in direction is detected in the slope, we first save the parameters for
the current slope and then reset sign, Vsi, Tsi, Vinxi, and Vepgni to produce a new
AZTEC slope. Now the algorithm returns to line detection but remains in slope
production mode. When there is no new plateau or change of direction, we simply
update the slope’s parameters, Ts; and Vg, and return to line detection with
LineMode remaining set to _SLOPE.

AZTEC does not produce a constant data reduction ratio. The ratio is frequently
as great as 10 or more, depending on the nature of the signal and the value of the
empirically determined threshold.

10.2.2 Data reconstruction

The data array produced by the AZTEC algorithm is an alternating sequence of
durations and amplitudes. A sample AZTEC-encoded data array is

{18,77, 4, 101, -5, =232, 4, 141, 21, 141}

We reconstruct the AZTEC data by expanding the plateaus and slopes into discrete
data points. For this particular example, the first two points represent a line 18
sample periods long at an amplitude of 77. The second set of two points represents
another line segment 4 samples long at an amplitude of 101. The first value in the
third set of two points is negative. Since this represents the length of a line seg-
ment, and we know that length must be positive, we recognize that this minus sign
is the flag indicating that this particular set of points represents a line segment with
nonzero slope. This line is five samples long beginning at the end of the previous
line segment (i.e., amplitude of 101) and ending at an amplitude of —235. The next
set of points is also a line with nonzero slope beginning at an amplitude of -235
and ending 4 sample pertods later at an amplitude of 141.

This reconstruction process produces an ECG signal with steplike quantization,
which is not clinically acceptable. The AZTEC-encoded signal needs postprocess-
ing with a curve smoothing algorithm or a low-pass filter to remove its jagged ap-
pearance and produce more acceptable output.

The least square polynomial smoothing filter described in Chapter 5 is an easy
and fast method for smoothing the signal. This family of filters fits a parabola to an
odd number (2L + 1) of input data points. Taking L = 3, we obtain

1
pk=737 (k-3 + Ixg2 + Gxg-1 + Txg + Goge1 + Ixpe2 — 20043)  (10.3)
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where py is the new data point and xj is the expanded AZTEC data. The smoothing
function acts as a low-pass filter to reduce the discontinuities. Although this
produces more acceptable output, it also introduces amplitude distortion.

Figure 10.5 shows examples of the AZTEC algorithm applied to an ECG.

N N
A (a)
In .
J

Figure 10.5 Examples of AZTEC applications. (a) Original waveform generated by the UW
DigiScope Genwave function (see Appendix D). (b) Small threshold, reduction ratio = 512:233,
PRD = 24.4%. (c) Large threshold, reduction ratio = 512:153, PRD = 28.1%. (d) Smoothed sig-
nal from (¢), L = 3, PRD = 26.3%.
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10.2.3 CORTES algorithm

The CORTES (Coordinate Reduction Time Encoding System) algorithm is a hy-
brid of the TP and AZTEC algorithms (Abenstein and Tompkins, 1982; Tompkins
and Webster, 1981). It atternpts to exploit the strengths of each while sidestepping
the weaknesses. CORTES uses AZTEC to discard clinically insignificant data in
the isoelectric region with a high reduction ratio and applies the TP algorithm to
the clinically significant high-frequency regions (QRS complexes). It executes the
AZTEC and TP algorithms in parallel on the incoming ECG data.

Whenever an AZTEC line is produced, the CORTES algorithm decides, based
on the length of the line, whether the AZTEC data or the TP data are io be saved. If
the line is longer than an empirically determined threshold, it saves the AZTEC
line. Otherwise it saves the TP data points. Since TP is used to encode the QRS
complexes, only AZTEC plateaus, not slopes, are implemented.

The CORTES algorithm reconstructs the signal by expanding the AZTEC
plateaus and interpolating between each pair of the TP data points. It then applies
parabolic smoothing to the AZTEC portions to reduce discontinuities.

10.3 FAN ALGORITHM

Originally used for ECG telemetry, the Fan algorithm draws lines between pairs of
starting and ending points so that all intermediate samples are within some speci-
fied error tolerance, € (Bohs and Barr, 1988). Figure 10.6 illustrates the principles
of the Fan algorithm. We start by accepting the first sample X¢ as the nonredundant
permanent point. It functions as the origin and is also called the originating point.
We then take the second sample X and draw two slopes (U/1,L1}. U1 passes
through the point (Xg, X1 + €), and L{ passes through the point (Xg, X1 —€). If the
third sample X3 falls within the area bounded by the two slopes, we generate two
new slopes [U2, L2} that pass through points (Xo, X2 + £) and (Xg, X2 —€). We
compare the two pairs of slopes and retain the most converging (restrictive) slopes
(i.e., {U1, L2} in our example). Next we assign the value of X2 to X and read the
next sample into X2, As a result, X2 always holds the most recent sample and X
holds the sample immediately preceding X2. We repeat the process by comparing
X2 to the values of the most convergent slopes. If it falls outside this area, we save
the length of the line T and its final amplitude X; which then becomes the new
originating point Xg, and the process begins anew. The sketch of the slopes drawn
from the originating sample to future samples forms a set of radial lines similar to a
fan, giving this algorithm its name.

When adapting the Fan algorithm to C-language implementation, we create the
variables, Xy1, Xp1, X2, and X;2, to determine the bounds of X2. From Figure
10.6(b), we can show that :

Xuv1-Xo
Xua="—"7+Xui (10.42)
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and
Xp1-X
Xpp=—"5 +XL1 (10.4b)

where T =1 ~{p.

La

Amplitude

® Saved samples

O Eliminated samples

’ .
time

1 i ¥ LS L ]

to by ta ts ta

Figure 10.6 Illustration of the Fan algorithm. (a) Upper and lower slopes (U and L) are drawn
within error threshold € around sample points taken at £, 73, ... (b) Extrapolation of Xgmnand X1

from X1, X11, and Xo,

Figure 10.7 shows the C-language fragment that implements the Fan algorithm.,

Fionura 101 R chawe an evamnla nf the Fan alanrithm annliad tn an BOYY cianal
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short X0, X1, X2 ;

short XU2, XL2, XU1, XL1;
short Epsilon ;

short *org, *fan ;

short T ;

short V2 ;

/* initialize all variables */
X0 = *org++;

X1 = %org++;

T=1,;

XUl = X1 + Epsilon ;
XL1 =X]1 - Epsilon ;
*fan++=X0;

while( there_is_data) |

V2 =%org++;

Xi=X2;

else |

X0=X1;
X1=X2;
T=1,;

XU2 =(XUl - X0)/T + XU1,
XL2 = (XL2 - X0)/T + XL2, /* lower bound of X2 */

f(X2<=XU2&&X2>=XL2) |

*fan++=T;
*fant+=X1;

/* sample points */
/* variable to determine bounds */
/* threshold */
/* original and Fan data */
/* length of line */
/* sample point */

/* the originating point */

/* the next point */

/* line length is initialize to 1 %/

/* upper bound of X1 %/

/* lower bound of X1 */

/* save the first permanent point */

/* get next sample point */
/* upper bound of X2 */

{* within bound */

/* obtain the most restrictive bound */
XU2 = (XU2 < X2 + Epsilon) ? XU2 : X2 + Epsilon ;
XL.2 =(XL2 > X2 - Epsilon) ? XL2 : X2 - Epsilon ;

T4++; /* increment line length %/

/* X1 hold sample preceding X2 */

/* X2 out of bound, save line */

/* save line length */
/* save final amplitude */

/* reset all variables */

XUl =X1 + Epsilon ;
XL1=X1 - Epsilon ;

Figure 10.7 Fragment of C-language program for implementation of the Fan algorithm.
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Figure 10.8 Examples of Fan algorithm applications. (a) Original waveform generated by the
UW DigiScope Ganwave function (sce Appendix D). (b) Small tolerance, reduction ratio =
512:201 PRD = 5.6%. (c) Large tolerance, reduction ratio = 512:155, PRD = 7.2%. (d) Smoothed
signal from (¢), L =3, PRD = 8.5%.
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We reconstruct the compressed data by expanding the lines into discrete points.
The Fan algorithm guarantees that the error between the line joining any two per-
manent sample points and any actual (redundant) sample along the line is less than
or equal to the magnitude of the preset error tolerance, The algorithm’s reduction
ratio depends on the error tolerance. When compared to the TP and AZTEC algo-
rithms, the Fan algorithm produces better signal fidelity for the same reduction
ratio (Jalaleddine et al., 1990).

Three algorithms based on Scan-Along Approximation (SAPA) techniques
(Ishijima et al., 1983; Tai, 1991) closely resemble the Fan algorithm. The SAPA-2
algorithm produces the best results among all three algorithms. As in the Fan
algorithm, SAPA-2 guarantees that the deviation between the straight lines
(reconstructed signal) and the original signal never exceeds a preset error tolerance.

In addition to the two slopes calculated in the Fan algorithm, SAPA-2 calculates
a third slope called the center slope between the originating sample point and the
actual future sample point. Whenever the center slope value does not fall within the
boundary of the two converging slopes, the immediate preceding sample is taken as
the originating point. Therefore, the only apparent difference between SAPA-2 and
the Fan algorithm is that the SAPA-2 uses the center slope criterion instead of the
actual sample value criterion.

10.4 HUFFMAN CODING

Huffman coding exploits the fact that discrete amplitudes of quantized signal do
not occur with equal probability (Huffman, 1952). It assigns variable-length code
words to a given quantized data sequence according to their frequency of accur-
rence. Data that occur frequently are assigned shorter code words.

10.4.1 Static Huffman coding

Figure 10.9 illustrates the principles of Huffman coding. As an example, assume
that we wish to transmit the set of 28 data points

(1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,4,4,4,4,5,5,5,6,6, 7}

The set consists of seven distinct quantized levels, or symbols. For each symbol, §;,
we calculate its probability of occurrence P; by dividing its frequency of occur-
rence by 28, the total number of data points. Consequently, the construction of a.
Huffman code for this set begins with seven nodes, one associaied with each P;. At
each step we sort the P; list in descending order, breaking the ties arbitrarily. The
two nodes with smallest probability, P; and P;, are merged into a new node with
probability P; + P;. This process continues until the probability list contains a sin-
gle value, 1.0, as shown in Figure 10.9(a).
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Probability of
Symbols, S; 3-bit binary code occurrence, Py Huffman code
1 001 0.25 10
2 010 0.21 00
3 011 0.18 111
4 100 0.14 110
5 101 0.11 011
6 110 0.07 0101
7 111 0.04 0100
(c)

Figwre 10.9 Illustration of Huffman coding. (a) At each step, P; are sorted in descending order
andthe two lowest P; are merged. (b) Merging operation depicted in a binary tree. (c) Summary
of Hiffman coding for the data set.
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The process of merging nodes produces a binary tree as in Figure 10.9(b). When
we merge two nodes with probability P; + P, we create a parent node with two
children represented by P; and Pj. The root of the tree has probability 1.0. We ob-
tain the Huffman code of the symbols by traversing down the tree, assigning 1 to
the left child and O to the right child. The resulting code words have the prefix
property (i.e., no code word is a proper prefix of any other code word). This prop-
erty ensures that a coded message is uniquely decodable without the need for
lookahead. Figure 10.9(c) summarizes the results and shows the Huffman codes for
the seven symbols. We enter these code word mappings into a translation table and
use the table to pad the appropriate code word into the output bit stream in the re-

duction process.
The reduction ratio of Huffman coding depends on the distribution of the source

symbols. In our example, the original data requires three bits to represent the seven
quantized levels. After Huffman coding, we can calculate the expected code word
length

7
El}= i):} I P (10.5)

where I; represents the length of Huffman code for the symbols. This value is 2.65
in our example, resulting in an expected reduction ratio of 3:2.65.

The reconstruction process begins at the root of the tree. If bit 1 is received, we
traverse down the left branch, otherwise the right branch. We continue traversing
until we reach a node with no child. We then output the symbol corresponding to
this node and begin traversal from the root again.

The reconstruction process of Huffman coding perfectly recovers the original
data. Therefore it is a lossless algorithm. However, a transmission error of a single
bit may result in more than one decoding error. This propagation of transmission
error is a consequence of all algorithms that produce variable-length code words.

10.4.2 Modified Huffman coding

The implementation of Huffman coding requires a translation table, where each
source symbol is mapped to a unique code word. If the original data were
quantized into 16-bit numbers, the table would need to contain 216 records. A table
of this size creates memory problems and processing inefficiency.

In order to reduce the size of the translation table, the modified Huffman coding
scheme partitions the source symbols into a frequent set and an infrequent set. For
all the symbols in the frequent set, we form a Huffman code as in the static
scheme. We then use a special code word as a prefix to indicate any symbol from
the infrequent set and attach a suffix corresponding to the ordinary binary encoding
of the symbol. .

Assume that we are given a data set similar to the one before. Assume also that
we anticipate quantized level O to appear in some future transmissions. We may
decide to partition the quantized levels {0, 7} into the infrequent set. We then
apply Huffman coding as before and obtain the results in Figure 10.10. Note that
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quantized levels in the infrequent set have codes with prefix 0100, making their
code length much longer than those of the frequent set. It is therefore important to
keep the probability of the infrequent set sufficiently small to achieve a reasonable
reduction ratio.

Some modified Huffman coding schemes group quantized levels centered about
0 into the frequent set and derive two prefix codes for symbols in the infrequent
set. One prefix code denotes large positive values and the other denotes large
negative values.

10.4.3 Adaptive coding

Huffman coding requires a translation table for encoding and decoding. It is
necessary to examine the entire data set or portions of it to determine the data
statistics. The translation table must also be transmitted or stored for correct
decoding.

An adaptive coding scheme attempts to build the translation table as data are
presented. A dynamically derived translation table is sensitive to the variation in
local statistical information. It can therefore alter its code words according to local
statistics to maximize the reduction ratio. It also achieves extra space saving
because there is no need for a static table.

An example of an adaptive scheme is the Lempel-Ziv-Welch (LZW) algorithm.
The LZW algorithm uses a fixed-size table. It initializes some positions of the table
for some chosen data sets. When it encounters new data, it uses the uninitialized
positions so that each unique data word is assigned its own position. When the
table is full, the LZW algorithm reinitializes the oldest or least-used position
according to the new data. During data reconstruction, it incrementally rebuilds the
translation table from the encoded data.

Probability of
Symbols, Sj 3-bit binary code occurrence, Pi Huffman code

0 000 0.00 0100000

1 001 0.25 10

2 010 0.21 00

3 01 0.18 111

4 100 0.14 110

5 101 0.11 011

6 110 0.07 0101

7 111 0.04 0100111

Figure 10.10 Results of modified Huffman coding. Quantized levels {0, 7} are grouped into the
infrequent set.
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10.4.4 Residual differencing

Typically, neighboring signal amplitudes are not statistically independent.
Conceptually we can decompose a sample value into a part that is correlated with
past samples and a part that is uncorrelated. Since the intersample correlation cor-
responds to a value predicted using past samples, it is redundant and removable.
We are then left with the uncorrelated part which represents the prediction error or
residual signal. Since the amplitude range of the residual signal is smaller than that
of the original signal, it requires less bits for representation. We can further reduce
the data by applying Huffman coding to the residual signal. We briefly describe
two ECG reduction algorithms that make use of residual differencing.

Ruttimann and Pipberger (1979) applied modified Huffman coding to residuals
obtained from prediction and interpolation. In prediction, sample values are ob-
tained by taking a linearly weighted sum of an appropriate number of past samples

P
x'(nTy = Y agx(nT - kT) (10.6)
k=1

where x(nT) are the original data, x'(nT) are the predicted samples, and p is the
number of samples employed in prediction, The farameters aj are chosen to min-
imize the expected mean squared error E[(x — x*)2]. When p =1, we choose a1 =1
and say that we are taking the first difference of the signal. Preliminary investiga-
tions on test ECG data showed that there was no substantial improvement by using
predictors higher than second order (Ruttimann et al., 1976). In interpolation, the
estimator of the sample value consists of a linear combination of past and future
samples. The results for the predictor indicated a second-order estimator to be suf-
ficient. Therefore, the interpolator uses only one past and one future sample

x{n)=ax(nT —T)y+ bx(nT+T) (10.7)

where the coefficients @ and b are determined by minimizing the expected mean
squared error. The residuals of prediction and interpolation are encoded using a
modified Huffman coding scheme, where the frequent set consists of some
quantized levels centered about zero. Encoding using residuals from interpolation
resulted in higher reduction ratio of approximately 7.8:1.

Hamilton and Tompkins (1991a, 1991b) exploited the fact that a typical ECG
signal is composed of a repeating pattern of beats with little change from beat to
beat. The algorithm calculates and updates an average beat estimate as data are
presented. When it detects a beat, it aligns and subtracts the detected beat from the
average beat. The residual signal is Huffman coded and stored along with a record
of the beat locations. Finally, the algorithm uses the detected beat to update the
average beat estimate. In this scheme, the estimation of beat location and quantizer
location can significantty affect reduction performance.
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).4.5 Run-length encoding

sed extensively in the facsimile technology, run-length encoding exploits the high
egree of correlation that occurs in successive bits in the facsimile bit stream. A bit
1 the facsimile output may either be 1 or 0, depending on whether it is a black or
hite pixel. On a typical document, there are clusters of black and white pixels that
ive rise to this high correlation. Run-length encoding simply transforms the
riginal bit stream into the string {v1, [1, v2, &2, ...} where v; are the values and
re the lengths. The observant reader will quickly recognize that both AZTEC and
he Fan algorithm are special cases of run-length encoding.

Take for example the output stream (1,1,1,1, 13,3, 3, 3,0, 0, 0} with 12
.Jlements. The output of run-length encoding {1, 5, 3, 4, 0, 3} contains only six

.lements. Further data reduction is possible by applying Huffman coding to the
output of run-length encoding.

10.5 LAB: ECG DATA REDUCTION ALGORITHMS

This lab explores the data reduction techniques reviewed in this chapter. Load UW
DigiScope according to the directions in Appendix D.

10.5.1 Turning point algorithm

From the ad (v) Ops menu, select C (0)mpress and then (Tyurn pt. The program
compresses the waveform displayed on the top channel using the TP algorithm,
then decompresses, reconstructs using interpolation, and displays the results on the
bottom channel. Perform the TP algorithm on two different ECGs read from files
and on a sine wave and a square wave. QObserve

1. Quality of the reconstructed signal

2. Reduction ratio
3. Percent root-mean-square difference (PRD)
4. Power spectra of original and reconstructed signals.

Tabulate and summarize all your observations.

10.5.2 AZTEC algorithm

Repeat section 10.5.1 for the AZTEC algorithm by selecting (A) ztec {rom the
comprESS menu. Using at least three different threshold values (try 1%, 5%, and
15% of the full-scale peak-to-peak value), observe and comment on the items in
the list in section 10.5.1. In addition, summarize the quality of the reconstructed
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signals both before and after applying the smoothing filter. Tabulate and summa-
rize all your observations.

10.5.3 Fan algorithm

Repeat section 10.5.2 for the Fan algorithm by selecting () an from the coMPRESS
menu, What can you deduce from comparing the performance of the Fan algorithm
with that of the AZTEC algorithm? Tabuiate and summarize all your observations,

10.5.4 Huffman coding

Select (H) uffman from the COMPRESS menu. Select (R} un in order to Huffman en-
code the signal that is displayed on the top channel. Do not use first differencing at
this point in the experiment. Record the reduction ratio, Note that this reduction ra-
tio does not include the space needed for the translation table which must be stored
or transmitted. What can you deduce from the PRD? Select (W) rite table to
write the Huffman data into a file. You may view the translation table later with the
DOS type command after exiting from scopz.

Load a new ECG waveform and repeat the steps above. When you select (R)un,
the program uses the translation table derived previously to code the signal. What
can you deduce from the reduction ratio? After deriving a new translation table
using (M) ake from the menu, select (R)un again and comment on the new reduc-
tion ratio.

Select (M)ake again and use first differencing to derive a new Huffman code. Is
there a change in the reduction ratio using this newly derived code? Select
(W)rite table to write the Huffman data into a file. Now reload the first ECG
waveform that you used. Without deriving a new Huffman code, observe the re-
duction ratio obtained. Comment on your observations.

Exit from the SCOPE program to look at the translation tables that you generated,
What comments can you make regarding the overhead involved in storing a trans-
lation table?
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10.7 STUDY QUESTIONS

10.1 Explain the meaning of lossless and lossy data compression. Classify the four data
reduction algorithms described in this chapter into these two categories.

10.2 Given the following data: {15, 10, 6,7, 5, 3, 4, 7, 15, 3}, produce the data points that are
stored using the TP algorithm.

10.3 Explain why an AZTEC reconstructed waveform is unacceptable to a cardiologist.
Suggest ways to alleviate the problem.

10.4 The Fan algorithm can be applied to other types of biomedical signals. List the desirable
characteristics of the biomedical signal that will produce satisfactory results using this al-
gorithm. Give an example of such a signal.

10.5 Given the following data set: {a, a, a,a, b, b, b, b, b, ¢, ¢, ¢, d, d, ¢}, derive the code
words for the data using Huffman coding. What is the average code word length?

10.6  Describe the advantages and disadvantages of modified Huffman coding.

10.7 Explain why it is desirable to apply Huffman coding to the residuals obtained by subtract-
ing the estimated sample points from the original sample points.

10.8 Data reduction can be performed using parameter extraction techniques. A particular
characteristic or parameter of the signal is extracted and transmitted in place of the origi-
nal signal. Draw a block diagram showing the possible configuration for such a system.
Your block diagram should include the compression and the reconstruction portions.
What are the factors governing the success of these techniques?

10.9 Does the TP algorithm (a) produce significant time-base distortion over & very long time,
(b) save every turning point {i.e., peak or valley) in a signal, (c) provide data reduction of
4-to-1 if applied twice 1o a signal without violating sampling theory, (d) provide for ex-
actly reconstructing the original signal, {¢) perform as well as AZTEC for electroen-
cephatography (EEG)? Explain your answers.

10.10 Which of the foliowing are characteristic of a Huffman coding algorithm? (a) Guarantees
more data reduction on an ECG than AZTEC; {(b) Cannot perfectly reconstruct the
sampled data points (within some designated error range); (c) Is a vaniable-length code;
(d) Is derived directly frorn Morse code; (¢) Uses ASCII codes for the most frequent A/D
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values; (f) Reguires advance knowledge of the frequency of occurrence of data patterns;
(g) Includes as part of the algorithm self-correcting error checks.

After application of the TP algorithm, what data sequence would be saved if the data
sampled by an analog-to-digital converter were: (a) {20, 40, 20, 40, 20, 40, 20, 40},
(b) (50, 40, 50, 20, 30, 40}, (c) (50, 50, 40, 30, 40, 50, 40, 30, 40, 50, 50, 40),
(d} {50, 25, 50, 25, 50, 25, 50, 25}7

After application of the TP algorithm on a signal, the data points saved are {50, 70, 30,
40). If you were to reconstruct the original data set, what is the data sequence that would
best approximate it?

The graph below shows a set of 20 data points sampled from an analog-to-digital con-
verter. At the top of the chart are the numerical values of the samples. The solid lines rep-
resent AZTEC encoding of this sampled signal.

01 10-11020405020-1-30-20-100 1 090 1 -1

&
50
0 \
30 4
® 7
10

e . g

-10 \

20

Amplimde

-3¢
-40

31 234 5678 ¢1011121314151617181920
Sample Uime

(a) List the data array that represents the AZTEC encoding of this signal.

{b) How much data reduction does AZTEC achieve for this signal?

{c} Which data points in the following list of raw data that would be saved if the
Tuming Point algorithm were applied to this signal?

0110-11020405020-1-30-20-1001001 -1
() If this signal were encoded with a Huffman-type variable-bit-length code with the fol-

lowing four bit patterns as part of the set of codes, indicate which amplitude value you
would assign to each pattern,

Amplitude
Code value
1
01
001
0001

{e) How much data reduction does each algorithm provide (assuming that no coding table
needs to be stored for Huffman coding)?

AZTEC encodes a signal as (2, 50, -4, 30, -4, 50, -4, 30, 4, 50, 2, 50}. How many data
points were originally sampled?

After applying the AZTEC algorithm to a signal, the saved data array is {2, 0, -3, 80, -3,
-30, -3, 0, 3, 0}. Draw the waveform that AZTEC would reconstruct from these data.
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10.16 AZTEC encodes a signal from an 8-bit analog-to-digital converter as {2, 50, -4, 30, -6,

10.17

10.18

50, -6, 30, -4, 50, 2, 50]. (a) What is the amount of data reduction? (b) What is the peak-
to-peak amplitude of a signal reconstructed from these data?

AZTEC encodes a signal from an 8-bit analog-to-digital converter as {3, 100, -5, 150,
-5, 50, 5, 100, 2, 100). The TP algorithm is applied to the same original signal. How
much more data reduction does AZTEC achieve on the same signal compared to TP?
The graph below shows a set of 20 data points of an ECG sampled with an 8-bit analog-
to-digital converter.

Amplitude

o wSABREREERRES

—
=]

—
[

g 1 2 3 4 5 B 7 8 2 10 11 1213 14 15 46 17 18 18
Sample time

{a) Draw a Huffman binary tree similar to the one in Figure 10.9(b) including the proba-
bilities of occurrence for this set of data.

(b) {5 points) From the binary tree, assign appropriate Huffman codes to the numbers in
the data array:

Number Huffman code
-10

0

10

20

60

{(c) Assuming that the Huffman table does not need to be stored, how much data reduction
is achieved with Huffman coding of this sampled data set? (Note: Only an integral num-
ber of bytes may be stored.)

(d) Decode the following Huffman-coded data and list the sample points that it
Tepresents:

010106110001
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Other Time- and Frequency-Domain Techniques

Dorin Panescu

A biomedical signal is often corrupted by noise (e.g., powerline interference, mus-
cle or motion artifacts, RF interference from electrosurgery or diathermy appara-
tus). Therefore, it is useful to know the frequency spectrum of the corrupting signal
in order to be able to design a filter to eliminate it. If we want to find out, for ex-
ample, how well the patient’s cardiac output is correlated with the area of the QRS
complex, then we need to use proper correlation techniques. This chapter presents
time and frequency-domain techniques that might be useful for situations such as
those exemplified above.

11.1 THE FOURIER TRANSFORM

The digital computer algorithm for Fourier analysis called the fast Fourier trans-
form (FFT) serves as a basic tool for frequency-domain analysis of signals.

11.1.1 The Fourier transform of a discrete nonperiodic signal

Assuming that a discrete-time aperiodic signal exists as a sequence of data sampled
from an analog prototype with a sampling period of T, the angular sampling
frequency being @s = 2n/T, we can write this signal in the time domain as a series
of weighted Dirac functions, Thus

-3

=3, x(n) &t —nT) (11.1)

A = woo

216
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The Fourier transform of this expression is

o0

X(w) = J x() e~jordy

—00

or X(w) = E x(n) &t nT) e~fondt

The ordering of integration and summation can be changed to give

oy o0

X(@= Y xn) [ &-nTedordr

n=—oo

Thus we obtain
X(@)= D, x(n)ejonT
n= oo
And similarly, we can find that the inverse Fourier transform is

Wy

x(n) =% X(w) efonT de

217

(11.2)

(11.3a)

(11.3b)

{11.3¢c)

(11.4)

One of the important properties of the Fourier transform, which is shown in
Figure 11.1(b), is its repetition at intervals of the sampling frequency in both posi-
tive and negative directions. Also it is remarkable that the components in the inter-
val 0 < @ < wgf2 are the complex conjugates of the components in the interval
®s/2 < @ < ws. It is modem practice to use normalized frequencies, which means
that the sampling period T is taken to be 1. Therefore, the Fourier transform pair

for discrete signals, considering noralized frequencies, is

X(@)= O, xn)eion

T
x(n)=%t' _f X(w) don do

(11.5a)

(11.5b)
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We observe that this kind of Fourier transform is continuous, and it repeats at in-
tervals of the sampling frequency.

} Spere
Modulus
AVAY\ VAV N
_ - -2, ~Wg 6 W, 2w w
t
(a) {b)

Figure 11.1 (a) A discrete-time signal, and (b) the medulus of its Fourier transform. Symrﬁcu‘y
about wg/2, due to the sampling process, is illustrated.

11.1.2 The discrete Fourier transform for a periodic sighal

The discrete Fourier transform (DFT) is the name given to the calculation of the
Fourier series coefficients for a discrete periodic signal. The operations are similar
to the calculation of Fourier coefficients for a periodic signal, but there are also
certain marked differences. The first is that the integrals become summations in the
discrete time domain, The second difference is that the transform evaluates only a
finite number of complex coefficients, the total being equal to the original number
of data points in one period of original signal. Because of this, each spectral line is
regarded as the k-th harmonic of the basic period in the data rather than identifying
with a particular frequency expressed in Hz or radian/s. Algebraically, the forward
and reverse transforms are expressed as

N-1 —jkn 2
X®= 3 xmeg— (11.6a)

n=0

N-1 fkn 210
x(n)=,lv kEOX(k)eL—'—'L (11.6b)

Figure 11.2 shows a discrete periodic signal and the real and imaginary parts of
its DFT. The first speciral line (k = 0) gives the amplitude of the dc component in
the signal, and the second line corresponds to that frequency which represents one
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cycle in N data points. Thislfrequency is 2r/N. The N-th line corresponds to the
sampling frequency of the discrete N-sample data sequence per period and the
k = Nf2-th line corresponds {o the Nyquist frequency. Using the symmetry of the
DFT, algorithms for fast conputation have been developed. Also, the symmetry
has two important implicatibns. The first is that the transformation will yield N
unique complex spectral lings. The second is that half of these are effectively re-
dundant because all of the information contained in a real time domain signal is
contained within the first N/2 complex spectral lines. These facts permitted the de-
velopment of the Fast Fourier Transform (FFT), which is presented in the next

section. |

4 Discrete signal

| I 1

| I |Ii!.

j Ll |11 EaiiETY

: de ‘

: k= k=N[2 k=N--1

! [ vl
mHH Jull i

i — T
0123 .. N-1 n
(a) (b)

Figure 11,2 (a) A discrete peﬁMic signal and (b) the real and imaginary parts of its DFT,

|
11.1.3 The fast Fourier trapsform

For a complete discussion of this subject, see Oppenheim and Schafer (1975). The
terrn FFT applies to any computational algorithm by which the discrete Fourier
transform can be evaluated for a signal consisting of N equally spaced samples,
with N usually being a powdr of twc. To increase the computation efficiency, we
must divide the DFT into successively smaller DFTs. In this process we will use
the symmetry and the periodiicity properties of the complex exponential

W = edRN

where Wy substitutes for ¢~2mN). Algorithms in which the decomposition is
based on splitting the sequenge x(n) into smaller sequences are called decimation in
time algorithms. The principle of decimation in time is presented below for N equal

to an integer power of 2. Wd can consider, in this case, X(k) to be formed by tvo
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N/2-point sequences consisting of the even-numbered points in x(n) and odd-
numbered points in x(n), respectively. Thus we obtain

XW= T smWi+ 3 W (11.7)
n=2p+1 n=2p

which can also be written as

Ni2-1 Ni2-1
XK= 3 s2W+ Y x@p+ WPk (11.8)
0

p= 0 p=
But W{zq = Wy and consequently Eq. (11.8) can be written as

Nf2-1 NR2-1
X= 3 YW + W Sxcop + DWR = X0+ Wh Xol)  (11.9)
pP= p =

Each of the sums in Eq. (11.9) is an N/2-point DFT of the even- and odd-numbered
points of the original sequence, respectively.

After the two DFTs are computed, they are combined to give the DFT for the
original N-point sequence. We can proceed further by decomposing each of the two
Nf2-point DFTs into two N/4-point DFTs and each of the four N/4-point DFTs into
two N/8-point DFTs, and so forth. Finally we reduce the computation of the N-
point DFT to the computation of the 2-point DFTs and the necessary additions and
multiplications.

Figure 11.3 shows the computations involved in computing X(k) for an 8-point
original sequence. Oppenheim and Schafer (1975) show that the total number of
complex additions and multiplications involved is Nlog,N. The original N-point
DFT requires N2 complex multiplications and additions; thus it turns out that the
FFT algorithm saves us considerable computing time.

Figure 11.4 shows the computation time for the FFT and the original DFT versus
N. The FFT requires at least an order of magnitude fewer computations than the
DFT. As an example, some modern microcomputers equipped with a math copro-
cessor are able to perform an FFT for a 1024-point sequence in much less than 1 s,
In the case when N is not an integer power of 2, the common procedure is to aug-
ment the finite-length sequence with zeros until the total number of:points reaches
the closest power of 2, or the power for which the FFT algorithm is written. This
technique is called zero padding. In order to make the error as low as possible,
sometimes the signal is multiplied with a finite-length window function.
Windowing is also applied when N is an integer power of 2 but the FFT-analyzed
signal does not contain an integer number of periods within the N points. In such
cases, the error introduced by the unfinished period of the signal may be reduced
by a proper choice of the window type.
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Figure 11.3 The flow graph of the decimation-in-time of an 8-point DFT.
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Figure 11.4 Computationa} savings with the FFT.
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11.1.4 C-language FFT function

The computational flow graph presented in Figure 11.3 describes an algorithm for
the computation of the FFT of finite-length signal applicable when the number of
poinits is an integer power of 2. When implementing the computations depicted in
this figure, we can imagine the use of two arrays of storage registers, one for the
array being computed and one for the data being used in computation. For
example, in computing the first array, one set of storage registers would contain the
input data and the second set of storage registers would contain the computed
results for the first stage.

In order to perform the computation based on the “butterfly” graph, the input
data must be stored in a nonsequential order. In fact, the order in which the input
data must be stored is the bit-reversed order,

To show what is meant by this, we write the index of the output data and the
index of the corresponding input data using three binary digits.

X(000) -—— x(000)
X(001) -— x{100)
X{010) — x(010)
X(011) —x(110)
X(100) — x(001)
X(101) — x(101)
X(110y — x(011)
X(111) —x(111)

If (n2 n1 nQ) is the binary representation of the index of the sequence x(n), which is
the input data, then [x(n)} must be rearranged such that the new position of
x(n2 n1 np) is x(ng n1 n2).

Figure 11.5 shows a C-language fragment for the FFT computation, which
reorders the input array, x[nr]. The FFT function in UW DigiScope allows the user
to zero-pad the signal or to window it with the different windows.

11.2 CORRELATION

We now investigate the concept of correlation between groups of data or between
signals. Correlation between groups of data implies that they move or change with
respect to each other in a structured way. To study the correlation between signals,
we will consider signals that have been digitized and that therefore form groups of
data.
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#define RORD(a,b) tempr=(a); (a)=(b); (b)=tempr

float tempr,=x[512];
int 1,3j,m,n,nn;

nn=512;
n=nn<<l;
J=1;
for (i=l;i<n;i++)({
if (3>i){
RORD (x([j),x[1)};/*this is the bit-reversal section of*/
RORD (% [j+1]},x[i+1]);/*a FFT computation routine*/
}
m=n >>1;
while (m>=2 && j>m) {
J-=m;
m >>1;
}

J4=m;

Figure 11.5 The C-language program for bit-reversal computations.

11.2.1 Correlation in the time domain
For N pairs of data {x(r),y(n)}, the correlation coefficient is defined as

N _ _
Y, {x(m)—x} (y(n) -y}
ray = —2=1 (11.10)

N N ~
'\/ Zl{avc(n)—-x}2 Zl{y(n)—y}2

If finite-length signals are to be analyzed, then we must define the crosscorrela-
tion function of the two signals.

N _ _
Zlix(n)-x} n+ k) -y}
n=

reyk) = = = (11.11)
zl{x(n)—ilz }:l{y(n)—§12
n= n=
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In the case when the two input signals are the same, the crosscorrelation function
becomes the autocorrelation function of that signal. Thus, the autocorrelation func-
tion is defined as

N _ _
Y (x(n) ~x} {x(n + k) —x}
redl) = g - 11.12)
ECRE

Figure 11,6 presents the crosscorrelation of respiratory signals recorded simulta-
neously from a human subject using impedance pneumography. In Figure 11.6(a),
the signals were acquired at different points along the midaxillary line of the sub-
ject. The subject was breathing regularly at the beginning of the recording, moving
without breathing in the middle of the recording, and breathing regularly again at
the end. In Figure 11.6(b), each combination of two recorded channels were cross-
correlated in order to try to differentiate between movement and regular breathing.

11.2.2 Correlation in the frequency domain
The original definition for the crosscorrelation was for continuous signals. Thus if

h(t) and g(#) are two continuous signals, then their crosscorrelation function is
defined as

cany= [ (D) h(t+ Ddt (11.13)

The Fourier transform of the crosscorrelation function satisfies
Corr (0) = G()* H(w) (11.14)

where G(w)* is the complex conjugate of G(@).
Thus if we consider # and g to be digitized, we may approximate the crosscorre-

lation function as
N-1

Col(m) =% 5, 80 Hom 4 (11.15)
n=

This equation is also known as the biased estimator of the crosscorrelation func-
tion. Between the DFTs of the two input discrete signals and the DFT of the biased
estimator, we have the relationship

Corr (k) = G(k)* H(k) (11.16)
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Figure 11.6 Respiratory signals recorded using impedance pneumography. (a) From top to bot-
tom, signals 1, 2, 3, and 4 were simultancously recorded along the midaxillary line of a human
tubject using a sampling rate of 5 sps. (b) From top to bottom, the traces represent the
crosscorrelation of the channels 1-2, 1-3, 1-4, 2-3, 2-4, 3-4, and the averaged correlation
coefficient. The resulis show, in part, that channels 2 and 3 are highly correlated during normal
breathing without motion, but not well correiated during motion without breathing.

Thus, the crosscorrelation of the two discrete signals can also be computed as the
inverse DFT of the product of their DFTs. This can be implemented using the FFT
and inverse FFT (IFFT) algorithms for increasing the computational speed in the
way given by

cgh(n) = IFFT ( FFT*(g) » FFT(h)) (11.17)

11.2,3 Correlation function
The C-language program in Figure 11.7 computes the crosscorrelation function of

two 512-point input sequences x[512] and y[512] and stores the output data into
rxy[512]. The idea of this program was used to implement the C-language function
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to compute the crosscorrelation between an ECG signal and a template. In such a
case, the array y[ ] must have the same dimension as the template.

/* The crosscorrelation function of x[ ] and y[ ] is */
/* output into rxyl ] */

vold corr{fleat *x,float *y)
{
int 1i,m,n;
float s,sl,s2,xm,ym,t;
float rxy(512];
n=512;
s=8l=52=x’m=ym=0,0;
for (i=0:i<n;i++){
xm=xm+x[1];
ym=ym+y[i]; /* che arithmetic mean of x[ | and y[ ] */
/* computed */
xm=xm/ (float)n;
ym=ym/ (£loat)n;
for { 1=0 ; i<n ; i++4){
si=sl+pow ({x[i]-xm),2.0};
s2=s2+pow ((y[(i}l-ym},2.0);

}

s=sqgrt (s1*s2);

for ( m=0 ; m<n ; m++} |
t=0.0;
for ( i=0 ;i<n ;i++) |

t=t+ (x[i}-xm)* (y[ (i+m) ¥n]-ym) ;

}

rxy[m]=t/s;

Figure 11,7 C-language function for computing crosscorrelation.

11.3 CONVOLUTION
11.3.1 Convolution in the time domain

It is well known that the passage of a signal through a linear system can be de-
scribed in the frequency domain by the frequency response of the system, In the
time domain, the response of the system to a specific input signal can be described
using convolution. Thus, the convelution is the time-domain operation, which is
the equivalent of the process of multiplication of the frequency spectra, of the input
signal, and of the pulse response of the analyzed system, in order to find the fre-
quency-domain description of the output signal.
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If a continuous signal x(¢) is applied at the input of an analogous system which
has the impulse response A(¢), then the equation for the output signal y(¢} is known
as the convolution equation.

o0

Y= [xte-1) h(7)dT (11.18)

—o0

For discrete signals, the convolution equation becomes

N-1
ym)= Y x(m-—n)hn) (11.19)

n=0

where x(n) is the input signal, h(n) is the sampled impulse response of the system,
and y(n) is the output signal. Equation (11.19) can be used for implementing finite
impulse response digital filters. In this case, A(n) would be a finite-length sequence
which represents, in fact, the coefficients of the FIR filter.

Figure 11.8 shows the input and output signals for a low-pass FIR filter witn
nine coefficients used for filtering the cardiogenic artifact from respiratory signals
recorded using impedance pneumography. The corner frequency of this filter is 0.7
Hz, and the attenuation in the stopband is about 20 dB.

11.3.2 Convolution in the frequency domain

Time-domain convolution is often expressed in a shorthand notation using a “«’

operator, thus
YO =x{e) * h(D) = h(2) * x(2)

or for discrete signals
¥(n) = x{n) * h(n) = h(n)*x(n)

The following relates the DFTs:
Y(k)=X(k) H(k)

If the FIT is used for computing time-domain convolution, this method is called
“fast convelution.” We obtain

x(n) %h(n) = IFFT(X(k) H(k)) (11.20)

where X(k) and H(k) are computed using the FFT algorithm,
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Figure 11.8 Respiratory signals recorded using impedance pneumography. (a) The signals from
four different recording channels sampled at a rate of 5 sps. (b) The corresponding signals after
being filtered with a 9-coefficient low-pass filter. The cardiogenic artifact, represented by the
additive noise seen in (a), is much attenuated by the filtering process.

Convolution in the frequency domain has a similar definition to that for convo-
lution in the time domain, For continuous spectra it is expressed by the integral

Y(m)zil;t- | X(w- s da (11.21)

—_—
The time-domain equivalent for Y(@ ) is

y(8) = x(t) 5(5)

Thus, the multiplication of two signals in the time domain is equivalent to the
convolution of their Fourier transforms in the frequency domain.

The same principles apply to discrete signals. We know that the discrete signal
spectrum has a basic structure defined in the interval —f3/2 < £ < +£5/2, where f; is
the sampling frequency. Outside this interval, the spectrum of the sampled signal
repeats identically, in positive and negative frequencies. If two discrete signals are
multiplied together in the time domain the resulting frequency spectrum would also
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repeat identically at intervals of sampling frequency. The repeating function would
of course be the convolution of the Fourier transforms of the two sampled signals.
It is important to note that its formn would not be identical with the form of the
spectrum of the convolution of two continuous time signals that had the shapes of
the envelopes of the sampled signals under consideration.

The concept of convolution in the frequency domain is fundamental to the signal
windowing approach. As an example, if h(n) is the impulse response of an ideal
low-pass filter with frequency characteristics H(w), h(n) will be an infinite length
sequence. For example, in order to implement an FIR filter which approximates
H(w), we must window h(n). Thus, we abtain h'(n) given by

h'(n}=w(n) h(n) (11.22)

where w(n) is the finite-length windowing sequence. We can obtain the Fourier
transform of the implemented FIR filter, H'(w), using convolution in the frequency
domain. Thus, we get

H{w) = H(w) » W(w) (11.23)

where W(w) is the Fourier transform of the windowing sequence. How well A(n) is
approximated by 4’'(n) depends on the windowing sequence properties.

One way to analyze the performance of the window is to study its Fourier
transform. In this approach, one may be interested in analyzing the attenuation in
the stopband and the transition width, Figure 11.9 presents the most important
parameters, which are mostly used in low-pass filter design, for several types of
windows. The designer should make a trade-off between the transition width, the
number of coefficients, and the minimum attenuation in the stopband. As shown in
Figure 11.9, for middle values of the transition width, the best results are obtained
using a Hamming window. If the designer is not interested in the transition width
performance, then the best results are obtained using a Blackman window, For a
detailed approach of the windowing theory, see Oppenheim and Schafer (1975).

Transition width Minimum stopband
Window of the main lobe attenuation
Rectangular 2is/N -21d8
Hanning 4fs/N -44dB
Hamming 4fs/N -53dB
Blackman 61s/N ~74 dB

Figure 11.9 The performance of different window functions. N represents the number of
coefficients used in the function which describes the window, and f5 is the sampling frequency.
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11.3.3 Convolution function

Figure 11.10 gives a C-language function that computes convolution in the time
domain between an input 512-point data sequence x[512] and h[ncoef], which
might be the coefficient array of an FIR filter, and stores the output data into
cxy[512).

7% The convolution between x[ } and h[ ] is saved into exyl ] */
conv(float *x,float *h,int ncoef)

int 1,m,n;

float cxy[512]:

n=512;

for ( m=0 ; m<n ; m++) |
cxy[m]=0.0;
for ( i=0 ;i<ncoef && 1<=m ;i++} |
cxy[m]+= hii]*x[m-1i];

]

Figure 11,10 C-language function for computing convolution.
11.4 POWER SPECTRUM ESTIMATION

11.4.1 Parseval’s theorem

Parseval’s theorem expresses the conservation of energy principle between the
time and frequency domains. For a periodic signal f{r) with the period T, Parseval’s
theorem tells us how to compute the average power contained in this signal know-
ing the Fourier series coefficients ag and by , k=0, ..., o

T2 oo ) 2
1 a b
1 ijz F20) di= ag? + k);l (—’5 + -%-) (11.24)

For a continuous aperiodic signal, we have a similar relationship between f() and
its Fourter pair

[ e d:=21—TE | IF)? do (11.25)
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Similarly, for the Fourier transform of real discrete signals

S fz(,,)-_.ﬁzl IF(Q)2 d2 (11.26)

In the case of the DFT we assume that the time-domain signal repeats identically
with a period of N points, thus the DFT will repeat at intervals of sampling
frequency. Parseval’s theorem is expressed under these conditions as

N-1 1 N-1
Y 2=y 3 X2 (11.27)
k=0

n=0

To estimate the average power of the signal, we compute the mean squared ampli-
tude and make the approximation

1 T2 1 N=1
= 2N dr=— 2 11.28
T——TJ,;Z f N Z S0 (11.28)

The method for power spectrum estimation (PSE) used in this section is based on
the periodogram concept. Thus, if we sample a function c(¢) and use the FFT to
compute its DFT, we get

N-1 ‘
—jkn2n
Cy = Zoc(n)e N
n=

Then the periodogram estimate for the power spectrum is defined for N/2 + 1 fre-
quencies as

P(0) = %ICOR
Pk = % (ICU2 +ICy_gl2) fork=1,...,N2~-1 (11.29}

PN = 37 P

By Parseval’s theorem, we see that the mean squared amplitude is equal to the sum
of the N/2 + 1 values of P. We must ask ourselves how accurate this estimator is
and how it can be improved. The following sections provide two methods for im-
proving the performance of the estimator.
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11.4.2 Welch's method of averaging modified periodograms

The periodogram is not a consistent spectral estitnator. The variance of the estimate
does not tend to go to zero as the record length approaches infinity. One method
for improving the estimator proposed by Welch is based on breaking up the N-
point data record x(n) into M-point segments x4(n) that overlap with each other by
L samples. If L = M then N = (K + 1) M where K is the total number of segments.
Subsequently a window function is applied to each segment. Then a periodogram is
computed for each windowed segment. Finally, these periodograms are averaged,
and the result is scaled to obtain the Welch estimate.

11.4.3 Blackman-Tukey spectral estimate

The Blackman-Tukey estimation method can be implemented in three steps. In the
first step, the middle 2M + 1 samples of the autocorrelation sequence, @yx(m),
where -M < m < M, are estimated from the available N-point data record. The sec-
ond step is to apply a window to the estimated autocorrelation lags. Finally, the
FFT is computed for the windowed autocorrelation estimate to yield the Blackman-
Tukey estimate, The parameter M and the window type must be selected in accor-
dance with the specific application.

11.4.4 Compressed spectral array and gray-scale plots

In the compressed spectral array (CSA) method, the resulting spectra are plotted in
time sequence (each power spectrum is plotted slightly above the previous spec-
trum ) in order to produce a three-dimensional effect, so that the resultant plots can
be easily interpreted. To show this effect on a two-dimensional graphics printout,
each subsequent power spectrum, representing a successive time period, is plotted
with its origin shifted in both the x and y directions. The more the origins are
shifted in the y direction relative to the x direction, the sharper the viewing angle,
which allows for better separation of the individual spectra but makes for a greater
difficulty in following a frequency component through several time periods. Figure
11.11(a) shows the CSA as a result of spectral analysis of the EGG
(electrogastrogram} of a diabetic patient whose time-domain record shows a tach-
yarthythmia (Pfister et al., 1988).

Figure 11.11(b) shows the corresponding gray-scale plot. This is a two-dimen-
sional plot with the x axis representing frequency, the y axis representing time, and
the intensity of the points representing the spectral power. The darker a point, the
greater the spectral power at that point. Each data point in the gray-scale plot is
represented by a 5 X 5 matrix of pixels. Each matrix data point can have one of 26
intensity levels, from all pixels off to all pixels on. All other values are scaled pro-
portionally to the maximal level and rounded to an integer value that represents the
intensity level. The gray-scale plot does not provide as great a degree of resolution
of amplitude as does the CSA method, but it does facilitate observation of fre-
quency shifts.



Other Time- and Frequency-Domain Techniques 233

Power
N
Time

minutes 5 Minutes <

“revsikEdlems s e b EAO MBI RN

Cycles per minute
() (b)

Figure 11.11 Electrogastrogram (EGG) of a diabetic patient. (a) Compressed spectral array
(CSA). (b) Gray-scale plot.

11.4.5 Power spectrum function

Figure 11.12 is a C-language function that computes the power spectrum for an N-
point data sequence (N = 512). The input data are taken from an input buffer as
integers, converted to floating-point format, and then used to compute the power
spectrum, The output data are scaled and saved in an output file as integers after
conversion from the floating-point format. The program presented is based on
Welch’s idea of periodogram averaging. Thus, this function divides the input se-
quence of data into two 256-point segments, windows each segment, and performs
the power spectrum estimation for each segment. Finally, the results obtained for
each segment are averaged and scaled according to the window effects.

11.5 LAB: FREQUENCY-DOMAIN ANALYSIS OF THE ECG

This lab provides experience in studying the frequency characteristics of signals.
Another resource for practice with these techniques is Alkin (1991),

11.5.1 Power spectral analysis of periodic signals
Use (G) enwavae to create sine wave and square wave signals at several different

fundamental frequencies using several different sampling rates. Use the
iP1wr Spact command to compute and observe the frequency spectrum of each
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signal and comment on how sampling rate affects the results. How could you use a
power spectrum routing to obtain the actual Fourier coefficients?

11.5.2 Power spectral analysis of an ECG

1. Use the (P)wr Spect command to find the frequency corresponding to the
main peak in the frequency spectrum of an ECG. Is the result what you expected?

2. Select ad(v) ops from the main menu, and choose a QRS complex using
(T) emplate. Use the (P)wr Spect command to find the spectrum of the zero-
padded QRS complex. Is the frequency corresponding to the main peak in the fre-
quency spectrum of the QRS complex what you expected?

3. After selecting a QRS complex template, use the (W) indow commangd to win-
dow the selected template, and then run the (P)wr Spect command. Document the
effects of the various windows.

4. Select a P-QRS-T segment as a template. Using the (P)wr Spect command,
find the power spectrum estimate for an ECG. Find the frequency corresponding to
the main peak in the frequency spectrum of an ECG. How does it differ from the
results of part 1?

#define WINDOW{],a,b) (1.0-fabs({(({J)-1)-(a))*(b}))/*parzen */
#define SQR(a) (sgrarg=(a),sgrarg*sqrarg)/*modulus of a,squared*/

for (j=1; j<=mm; 3++) |
w=WINDOW (], facm, facp);
wl{2*j-2] *=w; /* the real part of then data segment
is windowed */
wll2*j-1] =0.0; /*the imaginary part is
set to zero */
}

fft(wl-1,mm,1); /*the fft of the windowed signal 1s performed*/
/* the power spectrum estimate for the windowed data segment
is computed */

pl0] +=(SQR(wl{0]+SQR{(wl[1]));
for (3=1;3j<m;i++) |

J2=2%3;

Pij] +=(SQR(W1[Jj2]))+SQR(W1[92+1])}+SQR(wl{-j2+4*m])+

SQR{(wl[~J2+4*m+1]));

}
plm) +=(SQR(wl[mm]+sgr (wl[mm+1]));

Eor (3=0;j<=m; 4++)} pl[]J] /= scale; /*the PSE is scaled */
/* considering the window effects */

Figure 11.12 C-language fragment for computing a power spectrum estimation.
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1.5.3 Crosscorrelation of the ECG

elect a QRS complex using the (T)emplate command. Use the (C)orrelation
ommand to correlate this QRS with the ECG. Explain the relationship between the
utput of the crosscorrelation function and the size of the selected template. What
; the time delay between the peak of the crosscorrelation function and the selected
)RS? Read a different ECG from a disk file, and crosscorrelate the template with
1e new ECG. Explain all your observations.

1.6 REFERENCES
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spectral analysis in detection of frequency differences in electrogastrograms of normal and
diabetic subjects. JEEE Trans. Biomed. Eng. 93541,

1.7 STUDY QUESTIONS

1.1 Derive Eqs. (11.24) and (11.27) considering x{(n) to be a digital periodic signal containing
N samples in a period.

1.2 If x(n) = 1.0 + cos(2nn/4.0), find the DFT of this signal for n =0, ..., 7. Write a C-language
program that creates a data file with the values of this signal. Read this data file with the
UW DigiScope program, and pad it with the corresponding number of zeros. Take the
power spectrum of the zero-padded signal using the (p)wr Spect command without
windowing it, and compare the result with your hand analysis. Explain the differences.

1.3 Create a file that has the values of x{n) = sin(2xn/512.0), n =0, ..., 511. Take the power
spectrum of this signal without windowing it. Replace the last 10 samples of this signal
with zeros. Take the power spectrum of the padded signal with and without a window.
Explain the differences.

1.4 Select one period of the signal created in question 11.2 as a template. Crosscorrelate this
template with the created signal. Explain the shape of the crosscorrelation function.
Compute the amplitude of the peak and compare it with the result of your experiment.

1.5 A 100-Hz-bandwidth ECG signal is sampled at a rate of 500 samples/s. (a) Draw the ap-
proximate frequency spectrum of the new digital signal obtained after sampling, and label
important points on the axes. (b) On the same graph, draw the approximate spectrum that
would be averaged from a set of normal QRS complexes.
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ECG QRS Detection
Valtino X. Afonso

Over the past few years, there has been an increased trend toward processing of tt
electrocardiogram (ECG) using microcomputers. A survey of literature in this rc
search area indicates that systems based on microcomputers can perform neede
medical services in an extremely efficient manner. In fact, many systems have a
ready been designed and implemented to perform signal processing tasks such ¢
12-lead off-line ECG analysis, Holter tape analysis, and real-time patient monito
ing. All these applications require an accurate detection of the QRS complex of it
ECG. For example, arrhythmia monitors for ambulatory patients analyze the ECt
in real time (Pan and Tompkins, 1985), and when an arrhythmia occurs, the mon
tor stores a time segment of the abnormal ECG. This kind of monitor requires a
accurate QRS recognition capability. Thus, QRS detection is an important part
many ECG signal processing systems.

This chapter discusses a few of the many techniques that have been developed 1
detect the QRS complex of the ECG. It begins with a discussion of the powt
spectrum of the ECG and goes on to review a variety of QRS detection algorithms

12.1 POWER SPECTRUM OF THE ECG

The power spectrum of the ECG signal can provide useful information about
QRS complex. This section reiterates the notion of the power spectrum presente
carlier, but also gives an interpretation of the power spectrum of the QRS comple:
The power spectrum (based on the FFT) of a set of 512 sample points that contai
approximately two heartbeats results in a series of coefficients with a maxim;
value near a frequency corresponding to the heart rate.

The heart rate can be determined by multiplying together the normalized fre
quency and the sampling frequency. We can also get useful information about tk
frequency spectrum of the QRS complex. In order to obtain this information, tf
QRS complex of the ECG signal must be selected as a template and zero-padde

236
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prior to the power spectrum analysis. The peak of the frequency spectrum obtained
corresponds to the peak energy of the QRS complex.

The ECG waveform contains, in addition to the QRS complex, P and T waves,
60-Hz noise from powerline interference, EMG from muscles, motion artifact from
the electrode and skin interface, and possibly other interference from electro-
surgery equipment in the operating room. Many clinical instruments such as a car-
diotachometer and an arrhythmia monitor require accurate real-time QRS detec-
tion. It is necessary to extract the signal of interest, the QRS complex, from the
other noise sources such as the P and T waves. Figure 12.1 summarizes the relative
power spectra of the ECG, QRS complexes, P and T waves, motion artifact, and
muscle noise based on our previous research (Thakor et al., 1983).

1.0
08
QRS complex
§ 0.6
2
';‘é 0.4
m -
0.2
Muscle noise
P-T
waves
0.0
0 5 10 15 20 25 30 35 40

Frequency (Hz)

Figure 12.1 Relative power spectra of QRS complex, P and T waves, muscle noise and motion
artifacts based on an average of 130 beats.

12.2 BANDPASS FILTERING TECHNIQUES

From the power spectral analysis of the various signal components in the ECG sig-
nal, a filter can be designed which effectively selects the QRS complex from the
ECG. Another study that we performed examined the spectral plots of the ECG and
the QRS complex from 3875 beats (Thakor et al., 1984). Figure 12.2 shows a plot
of the signal-to-noise ratio (SNR) as a function of frequency. The study of the
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power spectra of the ECG signal, QRS complex, and other noises also revealed that
a maximum SNR value is obtained for a bandpass filter with a center frequency of
17 Bz and a Q of 3. Section 12.3 and a laboratory experiment examine the effects
of different values of the Q of such a filter.
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Figure 12.2 Plots of the signal-to-noise ratio (SNR} of the QRS complex referenced to all other
signal noise based on 3875 heart beats. The optimal bandpass filter for a cardiotachometer max-
imizes the SNR.

12.2.1 Two-pole recursive filter

A simple two-pole recursive filter can be implemented in the C language to band-
pass the ECG signal. The difference equation for the filter is

y(nT) = 1.875y(nT - T) - 0.9219y(nT - 2T) + x (nT) ~x(nT-27)  (12.1)

This filter design assumes that the ECG signal is sampled at 500 samples/s. The
values of 1.875 and 0.9219 are approximations of the actual design values of
1.87635 and 0.9216 respectively. Since the coefficients are represented as powers
of two, the multiplication operations can be implemented relatively fast using the
shift operators in the C language. Figure 12.3 displays the code fragment that
implements Eq. (12.1).
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twoPoleRecursive (int data)

static int xnt, xml, xm2, ynt, yml, ym2 = 0;
xnt = data;

ynt = (yml + yml >> 1 + yml >> 2 + yml >> 3) +
(ym2 >> 1 + ym2 >> 2 + ym2 >> 3 +
ym2 >> 5 + ym2 >> 6) + xnt - xm2;

Xm2 = xml;
xml = xnt;
xm2 = yml;
ym2 = yml;
yml = ynt;

return(ynt);

Figure 12.3 C-language code to implement a simple two-pole recursive filter.

Note that in this code, the coefficients 1.87635 and 0.9216 are approximated by

111

and

1 1 1 1 1
0.9219 = 2*4*3*3‘2‘*@

12.2.2 Integer filter

An approximate integer filter can be realized using the general form of the transfer
function given in Chapter 7. QRS detectors for cardiotachometer applications fre-
quently bandpass the ECG signal using a center frequency of 17 Hz. The denomi-
nator of the general form of the transfer function allows for poles at 60°, 90°, and
120°, and these correspond to center frequencies of a bandpass filter of 7/6, T/4,
and T/3 Hz, respectively. The desired center frequency can thus be obtained by
choosing an appropriate sampling frequency.

Ahlstrom and Tompkins (1985) describe a useful filter for QRS detection that is
based on the following transfer function:;

[ — z-122
H(z) = (Q-z1+7272 (12.2)

This filter has 24 zeros at 12 different frequencies on the unit circle with poles at
160°. The ECG signal is sampled at 200 sps, and then the turning point algorithm
is used to reduce the sampling rate to 100 sps. The center frequency is at 16.67 Hz
and the nominal bandwidth is +8.3 Hz. The duration of the ringing is approxi-
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mately 240 ms (the next section explains the effects of different filter Qs). The
difference equation to implement this transfer function is

Y(nT) = 29(nT — T) = 3y(nT - 2T) + 2y(nT - 3T) - y(nT - 4T)
+ x(nT) — 2x(nT — 12T) + x(nT — 24T) (12.3)

12.2.3 Filter responses for different values of Q

The value of Q of the bandpass filter centered at fo = 17 Hz determines how well
the signal of interest is passed without being attenuated. It is also necessary to in-
crease the SNR of the signal of interest; that is, the QRS complex. The Q of the fil-
ter is calculated as

0 = BW (12.4)

A value of Q that is too high will result in & very oscillatory response {Thakor et
al., 1984). The ripples must die down within 200 ms. This is necessary so that the
ripples from one QRS complex do not interfere with the ripples from the next one.
With a center frequency of 17 Hz, the maximal permissible 0 was found to be 5.
Figure 12.4 shows the effect of different values of (. For a bandpass filter with

fo= 17 Hz, a @ value of 5 was found to maximize the SNR (Thakor et al., 1984).

Figure 12.4 Effects of different values of 0. A higher Q results in a oscillatory transient re-
sponse. () @ =8. (b)@=3.(c) @ =1.
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12.3 DIFFERENTIATION TECHNIQUES

Differentiation forms the basis of many QRS detection algorithms. Since it is basi-
cally a high-pass filter, the derivative amplifies the higher frequencies characteris-
tic of the QRS complex while attenuating the lower frequencies of the P and T
waves.

An algorithm based on first and second derivatives originally developed by
Balda et al. {(1977) was modified for use in high-speed analysis of recorded ECGs
by Ahlstrom and Tompkins (1983). Friesen et al. (1990) subsequently implemented
the algorithm as part of a study to compare noise sensitivity among certain types of
QRS detection algorithms. Figure 12.5 shows the signal processing steps of this
algorithm.

(@)

(b)

-

(c)

~

A
d)
—_—e

(e)

A

N

Figure 12.5 Various signal stages in the QRS detection algorithm based on differentiation.
(a) Original ECG. (b) Smoothed and rectified first derivative. (c) Smoothed and rectified second
derivative. (d) Smoothed sum of (b) and (c). (e} Square pulse output for each QRS complex.
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The absolute values of the first and second derivative are calculated from the
ECG signal
yo(nT} = | x(nT) — x{(nT - 2T} (12.5)
yi(nT) = x(nT) — 2x(nT = 2T) + x(nT - 4T) | {12.6)
These two data buffers, yo(nT) and y1(nT), are scaled and then sutnmed

y2(nT) = 1.3y0(nT) + 1.1y1(nT) (12.7)

The data buffer y2(nT) is now scanned until a certain threshold is met or exceeded
y2(iN 210 (12.8)

Once this condition is met for a data point in y2(iT), the next eight points are com-
pared to the threshold. If six or more of these eight points meet or exceed the
threshold, then the segment might be part of the QRS complex. In addition to de-
tecting the QRS complex, this algorithm has the advantage that it produces a pulse
which is proportional in width to the complex. However, a disadvantage is that it is
particularly sensitive to higher-frequency noise.

12.4 TEMPLATE MATCHING TECHNIQUES

In this section we discuss techniques for classifying patterns in the ECG signal that
are quite related to the human recognition process.

12.4.1 Template crosscorrelation

Signals are said to be correlated if the shapes of the waveforms of two signals
match one another, The correlation coefficient is a value that determines the degree
of match between the shapes of two or more signals. A QRS detection technique
designed by Dobbs et al. (1984) uses crosscorrelation.

This technique of correlating one signal with another requires that the two sig-
nals be aligned with one another. In this QRS detection technique, the template of
the signal that we are trying to match stores a digitized form of the signal shape
that we wish to detect. Since the template has to be correlated with the incoming
signal, the signal should be aligned with the template. Dobbs et al. describe two
ways of implementing this.

The first way of aligning the template and the incoming signal is by using the
fiducial points on each signal. These fiducial points have to be assigned to the
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signal by some external process. If the fiducial points on the template and the
signal are aligned, then the correlation can be performed.

Another implementation involves continuous correlation between a segment of
the incoming signal and the template. Whenever a new signal data point arrives,
the oldest data point in time is discarded from the segment (a first-in-first-out data
structure). A correlation is performed between this signal segment and the template
segment that has the same number of signal points. This technique does not require
processing time to assign fiducial points to the signal. The template can be thought
of as a window that moves over the incoming signal one data point at a time. Thus,
alignment of the segment of the signal of interest must occur at least once as the
window moves through the signal.

The value of the crosscorrelation coefficient always falls between +1 and -1. A
value of +1 indicates that the signal and the template match exactly. As mentioned
earlier, the value of this coefficient determines how well the shapes of the two
waveforms under consideration match. The magnitude of the actual signal samples
does not matter. This shape matching, or recognizing process of QRS complexes,
conforms with our natural approach to recognizing signals.

12.4.2 Template subtraction

Figure 12.6 illustrates a template subtraction technique. This is a relatively simple
QRS detection technique as compared to the other ones described in this chapter.

Template of QRS waveform
ECG
time

incoming ECG signal

Figure 12.6 In simple template matching, the incoming signal is subtracted, point by point, from
the QRS template. If the two waveforms are perfectly aligned, the subtraction results in & zero
value.
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The algorithm begins by saving a segment of the incoming ECG signal that cor-
responds to the QRS waveform. This segment or template is then compared with
the incoming ECG signal. Each point in the incoming signal is subtracted from the
corresponding point in the template. When the template is aligned with 28 QRS
waveform in the signal, the subtraction results in a value very close to zero. This
algorithm uses only as many subtraction operations as there are points in the
template.

12.4.3 Automata-based template matching

Furno and Tompkins (1982) developed a QRS detector that is based on concepts
from automata theory. The algorithm uses some of the basic techniques that are
common in many pattern recognition systems. The ECG signal is first reduced into
a set of predefined tokens, which represent certain shapes of the ECG waveform.

Figure 12.7 shows the set of tokens that would represent a normal ECG. Then
this set of tokens is input to the finite state automaton defined in Figure 12.8. The
finite state automaton is essentially a state-transition diagram that can be imple-
mented with IF ... THEN control statements available in most programming lan-
guages. The sequence of tokens is fed into the automaton, For example, a sequence
of tokens such as zero, normup, normdown, and normup would result in the au-
tomaton signaling a normal classification for the ECG.

iV

normup narmdown

noisadown noisedown

noiseup

noissup

normup

Figure 12.7 Reduction of an ECG signal to tokens.

The sequence of tokens must be derived from the ECG signal data. This is done
by forming a sequence of the differences of the input data. Then the algorithm
groups together those differences that have the same sign and also exceed a certain
predetermined threshold level. The algorithm then sums the differences in each of
the groups and associates with each group this sum and the number of differences
that are in it.
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This QRS detector has an initial learning phase where the program approxi-
mately determines the peak magnitude of a normal QRS complex. Then the
algorithm detects a normal QRS complex each time there is a deflection in the
waveform with a magnitude greater than half of the previously determined peak.
The algorithm now teaches the finite state automaton the sequence of tokens that
make up a normal QRS complex. The number and sum values (discussed in the
preceding paragraph) for a normal QRS complex are now set to a certain range of
their respective values in the QRS complex detected.

EXIT with NORMAL
classification

ENTER
\ normup

normup normdown
\ / {else)

(else)

28ro

(else)

EXIT with NOISE
classification

Figure 12.8 State-transition diagram for a simple automaton detecting only normal QRS com-
plexes and noise. '_I‘he state transition (else) refers to any other token not labeled on a state transi-
tion leaving a particular state.

The algorithm can now assign a waveform token to each of the groups formed
previously based on the values of the number and the sum in each group of differ-
ences. For example, if a particular group of differences has a sum and number
value in the ranges (determined in the leaming phase) of a QRS upward or down-
ward deflection, then a normup or normdown token is generated for that group of
differences. If the number and sum values do not fall in this range, then a noiseup
or noisedown token is generated. A zero token is generated if the sum for a group
of differences is zero. Thus, the algorithm reduces the ECG signal data into a se-
quence of tokens, which can be fed to the finite state automata for QRS detection.
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12.5 A QRS DETECTION ALGORITHM

A real-time QRS detection algorithm developed by Pan and Tompkins (1985) was
further described by Hamilton and Tompkins (1986). It recognizes QRS complexes
based on analyses of the slope, amplitude, and width.

Figure 12.9 shows the various filters involved in the analysis of the ECG signal.
In order to attenuate noise, the signal is passed through a bandpass filter composed
of cascaded high-pass and low-pass integer filters. Subsequent processes are differ-
entiation, squaring, and time averaging of the signal.

d
—t % - X(1) — (1)
Low-pass High-pass d[} 2 1 32
ECG ﬂltgr filter pra L—m1 |} L-I'-ﬁnz L Z(r)

Figure 12.9 Filter stages of the QRS detector. z(n) is the time-averaged signal. y(n} is the band-
passed ECG, and x(n) is the differentiated ECG.

We designed a bandpass filter from a special class of digital filters that require
only integer coefficients. This permits the microprocessor to do the signal process-
ing using only integer arithmetic, thereby permitting real-time processing speeds
that would be difficult to achieve with floating-point processing. Since it was not
possible to directly design the desired bandpass filter with this special approach,
the design actually consists of cascaded low-pass and high-pass filter sections. This
filter isolates the predominant QRS energy centered at 10 Hz, attenuates the low
frequencies characteristic of P and T waves and baseline drift, and also attenuates
the higher frequencies associated with electromyographic noise and power line in-
terference.

The next processing step is differentiation, a standard technique for finding the
high slopes that normally distinguish the QRS complexes from other ECG waves.
To this point in the algorithm, all the processes are accomplished by linear digital
filters,

Next is a nonlinear transformation that consists of point-by-point squaring of the
signal samples. This transformation serves to make all the data positive prior to
subsequent integration, and also accentuates the higher frequencies in the signal
obtained from the differentiation process. These higher frequencies are normally
characteristic of the QRS complex.

The squared waveform passes through a moving window integrator. This inte-
grator sums the area under the squared waveform over a 150-ms interval, advances
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one sample interval, and integrates the new 150-ms window. We chose the win-
dow’s width to be long enough to include the time duration of extended abnormal
QRS complexes, but short enough so that it does not overlap both a QRS complex
and a T wave.

Adaptive amplitude thresholds applied to the bandpass-filtered waveform and to
the moving integration waveform are based on continuously updated estimates of
the peak signal level and the peak noise. After preliminary detection by the adap-
tive thresholds, decision processes make the final determination as to whether or
not a detected event was a QRS complex.

A measurement algorithm calculates the QRS duration as each QRS complex is
detected. Thus, two waveform features are available for subsequent arrhythmia
analysis—RR interval and QRS duration.

Each of the stages in this QRS detection technique are explained in the following
sections. Figure 12.10 is a sampled ECG that will serve as an example input signal
for the processing steps to follow.

et

0 0.1 02 0.3 04 0.5
Time (s)

Figure 12.10 Electrocardiogram sampled at 200 samples per second.

12.5.1 Bandpass integer filter

The bandpass filter for the QRS detection algorithm reduces noise in the ECG sig-
nal by matching the spectrum of the average QRS complex., Thus, it attenuates
noise due to muscle noise, 60-Hz interference, baseline wander, and T-wave inter-
ference. The passband that maximizes the QRS energy is approximately in the 5-
15 Hz range, as discussed in section 12.1. The filter implemented in this algorithm
is a recursive integer filter in which poles are located to cancel the zeros on the unit
circle of the z plane. A low-pass and a high-pass filter are cascaded to form the
bandpass filter.
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Low-pass filter

The transfer function of the second-order low-pass filter is

(1= —6)2
H(z) = (: - ’_1)2 (12.9)

The difference equation of this filter is
y(nT) = 2y(nT = T) = y(nT = 2T) + x(nT) — 2x(nT - 67) + x(nT - 12T)  (12.10)

The cutoff frequency is about 11 Hz, the delay is five samples (or 25 ms for a sam-
pling rate of 200 sps), and the gain is 36. Figure 12.11 displays the C-language
program that implements this low-pass filter. In order fo avoid saturation, the out-
put is divided by 32, the closest integer value to the gain of 36 that can be imple-
mented with binary shift arithmetic.

int LowPassFilter (int data)

{
static int yl = 0, y2 = 0, x[26], n = 12;

int yO0;
x[n] = x[n + 13] = data;
y0 = (vl << 1) - y2 + x[n] - (X[n + 6] << 1) + x[n + 12];
Y2 = yl;
yl = y0;
y0 >>= 5;
if{(--n < 0)
n = 12;

return (yv0};

Figure 12.11 C-language program to implement the low-pass filter.

Figure 12.12 shows the performance details of the low-pass filter. This filter has
purely linear phase response. Note that there is more than 35-dB attenuation of the
frequency corresponding to 0.3 fifs. Since the sample rate is 200 sps for these fil-
ters, this represents a frequency of 60 Hz. Therefore, power line noise is signifi-
cantly attenuated by this filter. Also all higher frequencies are attenuated by more
than 25 dB.
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(a)

Amplinade (dB)

04 05

iy

©
Figure 12,12 Low-pass filter. a) Pole-zero plot. b) Amplitude response. ¢) Phase response.,

Figure 12.13 shows the ECG of Figure 12.10 after processing with the low-pass
filter. The most noticeable result is the attenuation of the higher frequency QRS
complex. Any 60-Hz noise or muscle noise present would have also been signifi-
cantly attenuated.
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Figure 12.13 Low-pass filtered ECG.

High-pass filter

Figure 12.14 shows how the high-pass filter is implemented by subtracting a first-
order low-pass filter from an all-pass filter with delay. The low-pass filter is an
integer-coefficient filter with the transfer function

1 -z32
Hip(z) = ,—}% =T _:__} (12.11)
and the difference equation
y(nT) = y(nT — T) + x(nT) — x(nT - 32T) (12,12)

This filter has a dc gain of 32 and a delay of 15.5 samples.

The high-pass filter is obtained by dividing the output of the low-pass filter by
its dc gain and then subtracting from the original signal. The transfer function of
the high-pass filter is

Hip(z) =§—((3= z —16-H—§’—§z) (12.13)

The difference equation for this filter is

p(nT) =x(nT - 16T) - 31—2 [y(nT = T) 4 x(nT) = x(nT-327)] (12.14)
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Total delay = z -18

Az2)

X{z) Z e a2 0 —] -

Low-pass
filter

Y3 1132

Figure 12,14 The high-pass filter is implemented by subtracting a low-pass filter from an ail-
pass filter with dzlay.

The low cutoff frequency of this filter is about 5 Hz, the delay is about 16T {or
80 ms), and the gain is 1. Figure 12.15 shows the C-language program that imple-
ments this high-pass filter.

int HighPassFilter (int data)

|
o
static int yl = 0, x[66], n = 32;
| int y0;
} x[n] = xin + 33] = data;
| y0 = yl + x[n] - x[n + 32];

¥yl = y0;
if{-=-n < 0}
n = 32;
return(x[n + 16] - (y0 >> 5));

Figure 12.15 C-language program to implement the high-pass filter,

Figure 12.16 shows the performance characteristics of the high-pass filter. Note
that this filter also has purely linear phase response.,
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Figure 12.16 High-pass filter. &) Amplitude response. b) Phase response.

Figure 12.17 shows the amplitude response of the bandpass filter which is com
posed of the cascade of the low-pass and high-pass filters. The center frequency o:
the passband is at 10 Hz. The amplitude response of this filter is designed to ap
proximate the spectrum of the average QRS complex as illustrated in Figure 12.1
Thus this filter optimally passes the frequencies characteristic of a QRS comple:
while attenuating lower and higher frequency signals.
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. Amplinde (dB)

Figure 12,17 Amplitude response of bandpass filter composed of low-pass and high-pass filters.

Figure 12.18 is the resultant signal after the ECG of Figure 12.10 passes through
he bandpass filter. Note the attenuation of the T wave due to the high-pass filter.

100

o o1 02 03 0.4 oS
Time (3)

Figure 12,18 Bandpass-filtered ECG.

2.5.2 Derivative

After the signal has been filtered, it is then differentiated to provide information
ibout the slope of the QRS complex. A five-point derivative has the transfer
unction

H(z)=01@2+z"1-273-274) | ' (12.15).
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This derivative is implemented with the difference equation

2x(nT) + x(nT — T) — x(nT — 3T) — 2x(nT - 4T)
8

¥(nT) = (12.16)

The fraction 1/8 is an approximation of the actual gain of 0.1. Throughout thes
filter designs, we approximate parameters with power-of-two values to facilitat
real-time operation. These power-of-two calculations are implemented in the ¢
language by shift-left or shift-right operations.

This derivative approximates the ideal derivative in the dc through 30-H
frequency range. The derivative has a filter delay of 27" (or 10 ms). Figure 12.1
shows the C-language program for implementing this derivative.

int Derivative(int data)

{
int y, i;
static int x_derv[4}l;

/*y = 1/8 (2x(nT) + x(nT - T) - x{(nT - 3T) - 2Zx{(nT - 4T)}*
y = (data << 1) + x _derv[3] - x derv{l] - (x_derv[0] << 1)
y >>»>= 3;
for (1 = 0; i < 3; i++)

x_derv([i] = x_derv[i + 1];
x_derv[3]) = data;

return(y);

Figure 12,19 C-language program to implement the derivative.

Figure 12.20 shows the performance characteristics of this derivative implemer
tation. Note that the amplitude response approximates that of a true derivative up t
about 20 Hz. This is the important frequency range since all higher frequencies ar
significantly attenuated by the bandpass filter.

Figure 12.21 is the resultant signal after passing through the cascade of filter
including the differentiator. Note that P and T waves are further attenuated whil
the peak-to-peak signal corresponding to the QRS complex is further enhanced.
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Figure 12.20 Derivative. a) Amplitude response. b) Phase response.
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Figure 12.21 ECQ after bandpass filtering and differcntiation.
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12.5.3 Squaring function -

The previous processes and the moving-window integration, which is explained in
the next section, are linear processing parts of the QRS detector, The squaring
function that the signal now passes through is a nonlinear operation. The equation
that implements this operation is -

y(nT) = [x(n1)}2 (12.17)

This operation makes all data points in the processed signal positive, and it am-
plifies the output of the derivative process nionlinearly. It emphasizes the higher
frequencies in the signal, which are mainly due to the QRS complex. A fact to note
in this operation is that the output of this stage should be hardlimited to a certain
maximum level corresponding to the number of bits used to represent the data type
of the signal. Figure 12.22 shows the results of this processing for our sample
ECG.

_— MY 52 - 04 04 . 05
Time (8}

Figure 12.22 ECG signal after squaring function,

12.5.4 Moving window integral

The slope of the R wave alone is not a guaranteed way to detect a QRS event.
Many abnormal QRS complexes that have large amplitudes and long durations (not
very steep slopes) might not be detected using information about slope of the R
wave only. Thus, we need to extract more information from the signal to detect a
QRS event.

Moving window integration extracts features in addition to the slope of the R
wave. It is implemented with the following difference equation:

¥(nT) =# [x(nT = (N = DD + x(nT = (N = 2)1) +...+ x(n)]  (12.18)
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where N is the number of samples in the width of the moving window. The value
of this parameter should be chosen carefully.

Figure 12.23 shows the output of the moving window integral for the sample
ECG of Figure 12.10. Figure 12.24 illustrates the relationship between the QRS
complex and the window width. The width of the window should be approximately
the same as the widest possible QRS complex. If the size of the window is too
large, the integration waveform will merge the QRS and T complexes together. On
the other hand, if the size of the window is too small, a QRS complex could
produce several peaks at the output of the stage. The width of the window should
be chosen experimentally. For a sample rate of 200 sps, the window chosen for this
algorithm was 30 samples wide (which corresponds to 150 ms).

Amplitude

Time (s)

Figure 12.23 Signal after moving window integration.
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Figure 12.24 The relationship of a QRS complex to the moving integration waveform. (a) ECG
signal. (b) Output of moving window integrator. QS: QRS width. W: width of the integrator

window.
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Figure 12.25 shows the C-language program that implements the moving win-
dow integration.

int MovingWindowIntegral {int data)

{
static int x[32], ptr = 0;
static long sum = §;

long ly;

int y:

1f{++ptr == 32)
ptr = 0;

sum -= x(ptr);

sum += data;

®iptr] = data;

ly = sum >> 5;

if(ly > 32400) /*check for register overflow*/
y = 32400;

else
y = (int) 1ly;

return{y);

Flgure 12.25 C-language program to implement the moving window integration.

Figure 12.26 shows the appearance of some of the filter outputs of this algo-
rithm. Note the processing delay between the original ECG complexes and corre-
sponding waves in the moving window integral signal.

12.5.5 Thresholding

The set of thresholds that Pan and Tompkins (1985) used for this stage of the QRS
detection algorithm were set such that signal peaks (i.e., valid QRS complexes)
were detected. Signal peaks are defined as those of the QRS complex, while noise
peaks are those of the T waves, muscle noise, etc. After the ECG signal has passed
through the bandpass filter stages, its signal-to-noise ratio increasés. This permits
the use of thresholds that are just above the noise peak levels. Thus, the overall
sensitivity of the detector improves, ’
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Figure 12.26 QRS detector signals. (a) Unfiltered ECG. (b) Output of bandpass filter. (c) Output
after bandpass, differentiation, and squaring processes. (d) Final moving-window intcgral.

Two sets of thresholds are used, each of which has two threshold levels. The set
of thresholds that is applied to the waveform from the moving window integrator is

SPKI = 0.125 PEAKI + 0.875 SPKI if PEAKI is the signal peak
NPKI =0.125 PEAKI + 0.875 NPKI if PEAKI is the noise peak
THRESHOLD Il = NPKT + 0.25 (SPKI — NPKI )
THRESHOLD I2 = 0.5 THRESHOLD 11
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All the variables in these equations refer to the signal of the integration waveform
and are described below:

PEAKI is the overall peak.

SPKI is the running estimate of the signal peak.
NPKI is the running estimate of the noise peak.
THRESHOLD 11 is the first threshold applied.
THRESHOLD 12 is the second threshold applied.

A peak is determined when the signal changes direction within a certain time
interval. Thus, SPKT is the peak that the algorithm has learned to be that of the
QRS complex, while NPKI peak is any peak that is not related to the signal of in-
terest. As can be seen from the equations, new values of thresholds are calculated
from previous ones, and thus the algorithm adapts to changes in the ECG signal
from a particular person,

Whenever a new peak is detected, it must be categorized as a noise peak or a
signal peak. If the peak level exceeds THRESHOLD [1 during the first analysis of
the signal, then it is a QRS peak. If searchback technique (explained in the next
section) is used, then the signal peak should exceed THRESHOLD 12 to be classi-
fied as a QRS peak. If the QRS complex is found using this second threshold level,
then the peak value adjustment is twice as fast as usual:

SPKI =0.25 PEAKI + 0.75 SPKI

The output of the final filtering stages, after the moving window integrator, must
be detected for peaks. A peak detector algorithm finds peaks and a detection algo-
rithm stores the maximum levels at this stage of the filtered signal since the last
peak detection. A new peak is defined only when a level that is less than half the
height of the peak level is reached. Figure 12.27 illustrates that this occurs halfway
down the falling edge of the peak (Hamilton and Tompkins, 1986).

Algorithm peak
detection point

AL

Peak lave] =

Peak level /2

Figure 12,27 Output after the moving window integrator, with peak detection point.
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12.5.6 Searchback technique

To implement the searchback technique, this algorithm maintains two RR-interval
averages. One average, RR AVERAGE], is that of the eight most recent heartbeats.
The other average, RR AVERAGEZ2, is the average of the eight most recent beats
which had RR intervals that fell within a certain range.

RR AVERAGEI =0.125(RRy_7+RRn_6+ ... +RRy)
RR AVERAGE2 =0.125(RRy_7 +RR n-6 +..+RR %)

The RR’, values are the RR intervals that fell within the following limits:

RR LOW LIMIT = 92% % RR AVERAGE2
RR HIGH LIMIT = 116% X RR AVERAGE?2

Whenever the QRS waveform is not detected for a certain interval,
RR MISSED LIMIT, then the QRS is the peak between the established thresholds
- mentioned in the previous section that are applied during searchback.

RR MISSED LIMIT = 166 % X RR AVERAGE?2

The heart rate is said to be normal if each of the eight most recent RR intervals are
between the limits established by RR LOW LIMIT and RR HIGH LIMIT.

12.5.7 P_erfdrmahce measurement

We tested the performance of the algorithm on the 24-hour annotated MIT/BIH
database, which is composed of half-hour recordings of ECGs of 48 ambulatory
patients (see references, MIT/BIH ECG database). This database, available on CD
ROM, was developed by Massachusettsa Institute of Technology and Beth Israel
Hospital. The total error in analyzing about 116,000 beats is 0.68 percent, corre-
sponding to an average error rate of 33 beats per hour. In fact, much of the error
comes from four particular half-hour tape segments (i.e., two hours of data from
the total database). '

Figure 12.28 shows the effect of excluding the four most problematic haif-hour
tapes from the overall results. Notice that the false-positive errors decrease much
more than do the false negatives. This difference indicates that this algorithm is
more likely to misclassify noise as a QRS complex than it is to miss a real event.
Elimination of these four half-hour tape segments reduces the error rate below 10
beats per hour. Another available ECG database was developed by the American
Heart Association (see references, AHA ECG database).
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Figure 12.28 Performance of QRS detection software. The total error of the QRS detection
algorithm can be substantially reduced by selectively eliminating problem tapes in the database,

12.6 LAB: REAL-TIME ECG PROCESSING ALGORITHM

This lab lets you “look inside” the inner workings of the algorithm QRS detection
algorithm developed by Pan and Tompkins (1985) that is described in section 12.5.
Load UW DigiScope, select ad(v) ops, then (Q)RS detect.

12.6.1 QRS detector algorithm processing steps

Observe the output of each of the stages in the QRS detector. Sketch or print one
cycle of the original ECG signal and the outputs of the low-pass, bandpass, deriva-
tive, squaring, and moving window integrator stages. Note the filter delay at each
of these stages.

12.6.2 Effect of the value of the Q of a filter on QRS detection
Implement several two-pole recursive filters with 17-Hz center frequencies to

observe the effects of different values of Q on the ECG, as in section 12.,2.1. What
value of r produces the most desirable response for detecting the QRS complex?
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12.6.3 Integer filter processing of the ECG

Use (G) enwave to generate an ECG signal sampled at 100 Hz. Process this signal
with a filter having the following difference equation.

y(nT) = 2y(nT — T} - 3y(nT - 2T} + 2y(nT - 3T) — y(nT - 4T)
+ x(nT) = 2x(nT = 127) + x(nT — 247)

Observe the output and note the duration of the ringing.
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12.8 STUDY QUESTIONS

12.1 How can ectopic beats be detected using the automata approach to QRS detection?

12.2 How can QRS complexes in abnormal waveforms be detected using the crosscorrelation
method?

12,3 In the moving window integrator of the algorithm in section 12.5, how should the widih
of the window be chosen? What are the effects of choosing a window width that is too
large or too small?
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12.5
12.6
12,7
i2.8
12.9

12.10
12.11

12.12
12.13

12.14

12.15

12.16

12.17

LIoMeaiCa: Uighal olgnal Frocessing

In the QRS detection algorithm explained in section 12,5, how should the first threshold
in each set of thresholds be changed so as to increase the detection sensitivity of irregular
heart rates?

What are the effects of bandpass filter 0 on the QRS-to-noise ratio in the ECG?

Design an algorithm that obtains the fiducial point on the ECG.

As an implementation exercise write a program using the C language, to detcct QRS
complexes in the ECG signal using any of the techniques described in this chapter.
Suggest a QRS detection aigorithm, based on some of the techniques explained in this
chapter or in other related literature, that can detect QRS complexes from the ECG in real
time.

Experiments to determine the frequency characteristics of the average QRS complex have
shown that the largest spectral energy of the QRS complex occurs at approximately what
frequency?

A filter with the difference equation, y(nT) = (y(nT — T)2 + x(nT), is best described as
what rraditional filter type?

The center frequency of the optimal QRS bandpass filter is not at the location of the
maximal spectral energy of the QRS complex. (a) What function is maximized for the op-
timal filter? (b) What is the center frequency of the optimal QRS filter for cardiotachome-
ters? (c} If this filter has the proper center frequency and a @ = 20, will it work properly?
If not, why not?

In addition to heart rate information, what QRS parameter is provided by the QRS
detection algorithm that is based on the first and second derivatives?

The derivative algorithm used in a real-time QRS detector has the difference equation:
¥(nT) = 2x(nT) + x(nT ~ T) — x(nT — 3T) — 2x(nT — 4T). (a) Draw its block diagram.
(b) What is its output sequence in response to a wunit step input? Draw the output
waveform. . - .

Wrile the equations for the amplitude and phase responses of the derivative algorithm
used in a real-time QRS detector that has the transfer function

22l gl 4222
8

Hi) =

A moving window integrator integrates over a window that is 30 samples wide and has an
overall amplitude scale factor of 1/30. If a unit impulse (i.e., 1,0, 0, 0, ...) is applied to
the input of this integrator, what is the cutput sequence?

A moving window integrator is five samples wide and has a unity amplitude scale factor.
A pacemaker pulse is described by the sequence: (1,1, 1,1,0,0,0,0, ...). Application of
this pu!}se to the input of the moving window integrator will produce what output se-
quence

The transfer function of a filter used in a real-time QRS detection algorithm is

(=92
H@) (1 —z-1)2

For a sample rate of 200 sps, this filter efiminares input signals of what frequencies?



